Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 60 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/cocv/2022048 | |
Published online | 30 August 2022 |
- L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and the Wasserstein spaces of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser (2005). [Google Scholar]
- L.A. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 1 (1992) 99-104. [CrossRef] [Google Scholar]
- L.A. Caffarelli and R. McCann, Free boundaries in optimal transport and Monge-Ampere obstacle problems. Ann. Math. (2) 171 (2010) 673-730. [CrossRef] [MathSciNet] [Google Scholar]
- G.C. Craig, A three-dimensional generalisation of Eliassen's balanced vortex equations derived from Hamilton's principle. Quart. J. Roy. Meteor. Soc. 117 (1991) 435-448. [CrossRef] [Google Scholar]
- M. Cullen and M. Sedjro, On a model of forced axisymmetric flows. SIAM J. Math. Anal. 6 (2014) 3983-4013. [CrossRef] [MathSciNet] [Google Scholar]
- A. Eliassen, Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv. 5 (1951) 19-59. [Google Scholar]
- A. Figalli, The Monge Ampere Equations and its Applications. Zurich Lectures in Advanced Mathematics, European Mathematical Society (2017). [Google Scholar]
- A. Figalli and Y. Kim, Partial regularity of Brenier solutions of Monge Ampere Equations. Discrete Contin. Dyn. Syst. 28 (2010) 559-565. [CrossRef] [MathSciNet] [Google Scholar]
- R. Fjortoft, On the frontogenesis and cyclogenesis in the atmosphere, Part I. Geofys. Publik. 16 (1946) 1-28. [Google Scholar]
- W. Gangbo, An elementary proof of the polar decomposition of vector-valued functions. Arch. Rati. Mech. Anal. 128 (1995) 380-399. [Google Scholar]
- W. Gangbo, Quelques problemes d'analyse convexe. Rapport d'habilitation a diriger des recherches (1995). Available at https://www.math.ucla.edu/~wgangbo/publications/. [Google Scholar]
- M. Sedjro, A Monge-Ampere equation with an unusual boundary condition. Symmetry 7 (2015) 2009-2024. [CrossRef] [MathSciNet] [Google Scholar]
- G.J. Shutts, M.W. Booth and J. Norbury, A geometric model of balanced axisymmetric flow with embedded penetrative convection. J. Atmos. Sci. 45 (1988) 2609-2621. [CrossRef] [Google Scholar]
- C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.