Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 59 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/cocv/2022028 | |
Published online | 18 August 2022 |
- M. Agueh, Asymptotic behavior for doubly degenerate parabolic equations. C. R. Math. Acad. Sci. Paris 337 (2003) 331–336. [CrossRef] [MathSciNet] [Google Scholar]
- M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differ. Equ. 10 (2005) 309–360. [Google Scholar]
- A.D. Alexandrov, A theorem on triangles in a metric space and some applications. Trudy Math. Inst. Steklov 38 (1951) 5–23. [Google Scholar]
- F. Alvarez, H. Attouch, J. Bolte and P. Redont, A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. (9) 81 (2002) 747–779. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995) 191–246. [MathSciNet] [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, second ed., Birkhäuser Verlag, Basel (2008). [Google Scholar]
- E. Asplund, Averaged norms. Israel J. Math. 5 (1967) 227–233. [CrossRef] [MathSciNet] [Google Scholar]
- E. Asplund, Topics in the theory of convex functions. In Theory and Applications of Monotone Operators (Proc. NATO Advanced Study Inst., Venice, 1968). Oderisi, Gubbio (1969), pp. 1–33. [Google Scholar]
- H. Attouch and A. Cabot. Asymptotic stabilization of inertial gradient dynamics with time dependent viscosity. J. Differ. Equ. 263 (2017) 5412–5458. [CrossRef] [Google Scholar]
- H. Attouch, Z. Chbani, J. Peypouquet and P. Redont. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. Ser. B 168 (2018) 123–175. [CrossRef] [Google Scholar]
- H. Attouch, J. Peypouquet and P. Redont. Fast convex optimization via inertial dynamics with Hessian driven damping. J. Differ. Equ. 261 (2016) 5734–5783. [CrossRef] [Google Scholar]
- I. Ayadi and G. Turinici, Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient descent. Preprint arXiv:2002.09304 (2020). [Google Scholar]
- A. Bacho, E. Emmrich and A. Mielke, An existence result and evolutionary T-convergence for perturbed gradient systems. J. Evol. Equ. 19 (2019) 479–522. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). [CrossRef] [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Second edition. CMS Books in Mathematics/Ouvrages de Mathéematiques de la SMC. Springer, Cham (2017). [CrossRef] [Google Scholar]
- D.P. Bertsekas, Convex optimization algorithms. Athena Scientific, Belmont, MA (2015). [Google Scholar]
- R.I. Bot, E.R. Csetnek and S.C. Léaszléo, Approaching nonsmooth nonconvex minimization through second order proximalgradient dynamical systems. J. Evol. Equ. 18 (2018) 1291–1318. [CrossRef] [MathSciNet] [Google Scholar]
- R.I. Bot and E.R. Csetnek, A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities. Optimization 68 (2019) 1265–1277. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Number 5 in North Holland Math. Studies. North-Holland, Amsterdam (1973). [Google Scholar]
- A. Cabot, H. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Am. Math. Soc. 361 (2009) 5983–6017. [CrossRef] [Google Scholar]
- J.A. Carrillo, R.J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19 (2003) 971–1018. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Carrillo, R.J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179 (2006) 217–263. [CrossRef] [MathSciNet] [Google Scholar]
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999) 428–517. [Google Scholar]
- P. Clément and W. Desch, Some remarks on the equivalence between metric formulations of gradient flows. Boll. Unione Mat. Ital. (9) 3 (2010) 583–588. [MathSciNet] [Google Scholar]
- P. Clément and W. Desch, A Crandall-Liggett approach to gradient flows in metric spaces. J. Abstr. Differ. Equ. Appl. 1 (2010) 46–60. [MathSciNet] [Google Scholar]
- P. Cléement and J. Maas, A Trotter product formula for gradient flows in metric spaces. J. Evol. Equ. 11 (2011) 405–427. [CrossRef] [MathSciNet] [Google Scholar]
- E. De Giorgi, New problems on minimizing movements. In: Boundary value problems for PDE and applications, edited by C. Baiocchi and J.-L. Lions. Masson, Paris (1993), pp. 81–98. [Google Scholar]
- E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980) 180–187. [Google Scholar]
- M.H. Duong, M.A. Peletier and J. Zimmer, GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles. Nonlinearity 26 (2013) 2951–2971. [CrossRef] [MathSciNet] [Google Scholar]
- F. Fleißner, T-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. ESAIM: COCV 25 (2019) Paper No. 28, 29 pp. [CrossRef] [EDP Sciences] [Google Scholar]
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, second edition. Springer, Berlin (2006). [Google Scholar]
- R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
- J. Jost, Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zuärich. Birkhäauser Verlag, Basel (1997). [Google Scholar]
- A. Jungel, U. Stefanelli and L. Trussardi, Two structure-preserving time discretizations for gradient flows. Appl. Math. Optim. 80 (2020) 733–764. [Google Scholar]
- G. Legendre and G. Turinici, Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces. C. R. Math. Acad. Sci. Paris 355 (2017) 345–353. [CrossRef] [MathSciNet] [Google Scholar]
- D. Matthes and S. Plazotta, A variational formulation of the BDF2 method for metric gradient flows. ESAIM: Math. Model. Numer. Anal. 53 (2019) 145–172. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Mielke, R. Rossi and G. Savare, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Muratori and G. Savare, Gradient flows and evolution variational inequalities in metric spaces. I: Structural properties. J. Funct. Anal. 278 (2020) 108347, 67 pp. [CrossRef] [MathSciNet] [Google Scholar]
- Y.E. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk SSSR 269 (1983) 543–547. [MathSciNet] [Google Scholar]
- S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Am. J. Math. 131 (2009) 475–516. [CrossRef] [Google Scholar]
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
- L. Portinale and U. Stefanelli, Penalization via global functionals of optimal-control problems for dissipative evolution. Adv. Math. Sci. Appl. 28 (2019) 425–447. [MathSciNet] [Google Scholar]
- T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence. SIAM J. Control Optim. 52 (2014) 1071–1107. [CrossRef] [MathSciNet] [Google Scholar]
- R.T. Rockafellar, Convex analysis. Princeton University Press (1970). [Google Scholar]
- R. Rossi, A. Mielke and G. Savaree, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 97–169. [MathSciNet] [Google Scholar]
- R. Rossi, A. Segatti and U. Stefanelli, Global attractors for gradient flows in metric spaces. J. Math. Pures Appl. 95 (2011) 204–244. [Google Scholar]
- C. Ryll-Nardzewski, On Borel measurability of orbits. Fund. Math. 56 (1964) 129–130. [CrossRef] [MathSciNet] [Google Scholar]
- F. Santambrogio, (Euclidean, metric, and Wasserstein) gradient flows: an overview. Bull. Math. Sci. 7 (2017) 87–154. [CrossRef] [MathSciNet] [Google Scholar]
- B. Shi, S.S. Du, M.I. Jordan and W.J. Su, Understanding the acceleration phenomenon via high-resolution differential equations. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01681-8. [Google Scholar]
- A. Tribuzio, Perturbations of minimizing movements and curves of maximal slope. Netw. Heterog. Media 13 (2018) 423–448. [CrossRef] [MathSciNet] [Google Scholar]
- D.H. Wagner, Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977) 859–903. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.