Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 58
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2022053
Published online 12 August 2022
  1. H. Adams, M. Blumstein and L. Kassab, Multidimensional scaling on metric measure spaces. Rocky Mount. J. Math. 50 (2020) 397–413. [CrossRef] [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savare, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media (2008). [Google Scholar]
  3. L. Ambrosio, S. Honda, J.W. Portegies and D. Tewodrose, Embedding of RCD*(K, N) spaces in L2 via eigenfunctions. J. Funct. Anal. 280 (2021) Paper No. 108968, 72. [CrossRef] [Google Scholar]
  4. L. Ambrosio and P. Tilli, Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004). [Google Scholar]
  5. E. Arias-Castro, A. Javanmard and B. Pelletier, Perturbation bounds for procrustes, classical scaling, and trilateration, with applications to manifold learning. J. Mach. Learn. Res. 21 (2020) 15–19. [Google Scholar]
  6. D. Azevedo and V.A. Menegatto, Eigenvalues of dot-product kernels on the sphere. Proc. Ser. Br. Soc. Comput. Appl. Math. 3 (2015). [Google Scholar]
  7. M. Balasubramanian and E.L. Schwartz, The isomap algorithm and topological stability. Science 295 (2002) 7–7. [CrossRef] [PubMed] [Google Scholar]
  8. Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent and M. Ouimet, Learning eigenfunctions links spectral embedding and kernel PCA. Neural Comput. 16 (2004) 2197–2219. [CrossRef] [PubMed] [Google Scholar]
  9. P. Berard, G. Besson and S. Gallot, Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4 (1994) 373–398. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Borg and P.J.F. Groenen, Modern multidimensional scaling: Theory and applications. Springer Science & Business Media (2005). [Google Scholar]
  11. I. Chesser, T. Francis, M. De Graef and E.A. Holm, Learning the grain boundary manifold: tools for visualizing and fitting grain boundary properties. Acta Mater. 195 (2020) 209–218. [CrossRef] [Google Scholar]
  12. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer (1969). [Google Scholar]
  13. J. Heinonen, P. Koskela, N. Shanmugalingam and J.T. Tyson, Sobolev spaces on metric measure spaces. Number 27. Cambridge University Press (2015). [CrossRef] [Google Scholar]
  14. L. Kassab, Multidimensional scaling: Infinite metric measure spaces. Preprint [arXiv:1904.07763] (2019). Masters thesis. [Google Scholar]
  15. S. Lim and F. Memoli, Classical mds on metric measure spaces. Preprint [arXiv:2201.09385] (2022). [Google Scholar]
  16. F. Memoli, Gromov-Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11 (2011) 417–487. [CrossRef] [MathSciNet] [Google Scholar]
  17. N. Puchkin, V. Spokoiny, E. Stepanov and D. Trevisan, Reconstruction of manifold embeddings into euclidean spaces via intrinsic distances. Preprint [arXiv:2012.13770] (2020). [Google Scholar]
  18. L. Rosasco, M. Belkin and E. De Vito, On learning with integral operators. J. Machine Learn. Res. 11 (2010) 905–934. [MathSciNet] [Google Scholar]
  19. B. Russo, On the Hausdorff-Young theorem for integral operators. Pacific J. Math. 68 (1977) 241–253. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Tenenbaum, Mapping a manifold of perceptual observations. Advances in neural information processing systems, 10 (1997). [Google Scholar]
  21. J. Tenenbaum, V. de Silva and J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319–2323. [CrossRef] [PubMed] [Google Scholar]
  22. J.T. Tyson and J.-M. Wu, Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Math 30 (2005) 313–336. [MathSciNet] [Google Scholar]
  23. J. von Neumann and I.J. Schoenberg, Fourier integrals and metric geometry. Trans. Arn,. Math. Soc. 50 (1941) 226–251. [CrossRef] [Google Scholar]
  24. J. Wang, Geometric structure of high-dimensional data and dimensionality reduction. Springer (2012). [Google Scholar]
  25. J. Weidmann, Integraloperatoren der Spurklasse. Math. Ann. 163 (1966) 340–345. [CrossRef] [MathSciNet] [Google Scholar]
  26. W.A. Wilson, On certain types of continuous transformations of metric spaces. Arn,. J. Math. 57 (1935) 62–68. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.