Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 72 | |
Number of page(s) | 26 | |
DOI | https://doi.org/10.1051/cocv/2022062 | |
Published online | 24 November 2022 |
- J. Bao, J. Shao and C. Yuan, Approximation of invariant measures for regime-switching diffusions. Potential Anal. 44 (2016) 707-727. [CrossRef] [MathSciNet] [Google Scholar]
- G.K. Basak and R.N. Bhattacharya, Stability in distribution for a class of singular diffusions. Ann. Probab. 20 (1992) 312-321. [CrossRef] [MathSciNet] [Google Scholar]
- G.K. Basak, A. Bisi and M.K. Ghosh, Stability of a random diffusion with linear drift. J. Math. Anal. Appi. 202 (1996) 604-622. [CrossRef] [Google Scholar]
- G.K. Basak, K. Kannan and H. Zhang, Stability in distribution and volume nullification of Levy flow. Stochastic Anal. Appi. 15 (1997) 151-186. [CrossRef] [Google Scholar]
- G.K. Basak, A. Bisi and M.K. Ghosh, Stability of degenerate diffusions with state-dependent switching. J. Math. Anal. Appl. 240 (1999) 219-248. [CrossRef] [MathSciNet] [Google Scholar]
- X. Chen, Z.-Q. Chen, K. Tran and G. Yin, Properties of switching jump diffusions: Maximum principles and Harnack inequalities, Bernoulli 25 (2019) 1045-1075. [CrossRef] [MathSciNet] [Google Scholar]
- X. Chen, Z-Q. Chen, K. Tran and G. Yin, Recurrence and ergodicity for a class of regime-switching jump diffusions. Appl. Math. Optim. 80 (2019) 415-445. [CrossRef] [MathSciNet] [Google Scholar]
- N.H. Dang, A note on sufficient conditions for asymptotic stability in distribution of stochastic differential equations with Markovian switching. Nonlinear Anal. 95 (2014) 625-631. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ji, J. Shao and F. Xi, Stability of regime-switching jump diffusion processes. J. Math. Anal. Appl. 484 (2020) 123727, 21 pp. [CrossRef] [MathSciNet] [Google Scholar]
- R. Khasminskii, Stochastic stability of differential equations. Stochastic Modelling and Applied Probability. 66. Springer, Heidelberg, 2012. xviii+339 pp. ISBN: 978-3-642-23279-4 [Google Scholar]
- X. Li, Q. Ma, H. Yang and C. Yuan, The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 56 (2018) 1435-1455. [CrossRef] [MathSciNet] [Google Scholar]
- X. Li, W. Liu, Q. Luo and X. Mao, Stabilisation in distribution of hybrid stochastic differential equations by feedback control based on discrete-time state observations. Automatica. 140 (2022) Paper No. 110210. [Google Scholar]
- X. Mao and C. Yuan, S tochastic differential equations with Markovian switching. Imperial College Press, London (2006). [Google Scholar]
- D.H. Nguyen, D. Nguyen and S.L. Nguyen, Stability in distribution of path-dependent hybrid diffusion. SIAM J. Control Optim. 59 (2021) 434-463. [CrossRef] [MathSciNet] [Google Scholar]
- K. Tran, Feedback Controls for Contraction of Switching Jump Diffusions with a Hidden Markov Chain. Statist. Probab. Lett. 178 (2021) Paper No. 109191, 7 pp. [CrossRef] [Google Scholar]
- K. Tran and P.T. Tien, Explicit criteria for moment exponential stability and instability of switching diffusions with Levy noise. Internat. J. Control (2022) DOI: 10.1080/00207179.2021.1971301. [Google Scholar]
- W.M. Wonham, Liapunov criteria for weak stochastic stability. J. Differential Eqs. 2 (1966) 195-207. [CrossRef] [Google Scholar]
- F. Xi and C. Zhu, On Feller and strong Feller properties and exponential ergodicity of regime-switching jump diffusion processes with countable regimes. SIAM J. Control Optim. 55 (2017) 1789-1818. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Yang and G. Yin, Stability of nonlinear regime-switching jump diffusion. Nonlinear Anal Theory Methods Appl. 75 (2012) 3854-3873. [CrossRef] [Google Scholar]
- G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications. Springer, New York (2010). [Google Scholar]
- G. Yin, G. Zhao and F. Wu, Regulation and Stabilization of Randomly Switching Dynamic Systems. SIAM J. Appl. Math. 72 (2012) 1361-1382. [CrossRef] [MathSciNet] [Google Scholar]
- G. Yin and F. Xi, Stability of regime-switching jump diffusions. SIAM J. Control Optim. 48 (2010) 4525-4549. [CrossRef] [MathSciNet] [Google Scholar]
- S. You, L. Hu, J. Lu and X. Mao, Stabilization in distribution by delay feedback control for hybrid stochastic differential equations. IEEE Trans. Automat. Contr. 67 (2022) 971-977. [CrossRef] [Google Scholar]
- C. Yuan and X. Mao, Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stochastic Process. Appl. 103 (2003) 277-291. [CrossRef] [MathSciNet] [Google Scholar]
- X. Zong, F. Wu and T. Tian, Stability and stochastic stabilization of numerical solutions of regime-switching jump diffusion systems. J. Differ. Equ. Appl. 19 (2013) 1733-1757. [Google Scholar]
- X. Zong, F. Wu, G. Yin and Z. Jin, Almost sure and pth-moment stability and stabilization of regime-switching jump diffusion systems. SIAM J. Control Optim. 52 (2014) 2595-2622. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.