Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 66
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2022059
Published online 24 October 2022
  1. L. Ambrosio, N. Fusco and D. Pallara, Vol. 254 of Functions of bounded variation and free discontinuity problems. Clarendon Press Oxford (2000). [Google Scholar]
  2. F. Bestehorn, C. Hansknecht, C. Kirches and P. Manns, A switching cost aware rounding method for relaxations of mixedinteger optimal control problems, in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE (2019) 7134–7139. [CrossRef] [Google Scholar]
  3. F. Bestehorn, C. Hansknecht, C. Kirches and P. Manns, Mixed-integer optimal control problems with switching costs: a shortest path approach. Math. Program. Ser. B 188 (2020) 621–652. [Google Scholar]
  4. K. Bredies, K. Kunisch and T. Pock, Total generalized variation. SIAM J. Imag. Sci. 3 (2010) 492–526. [CrossRef] [Google Scholar]
  5. C. Buchheim, A. Caprara and A. Lodi, An effective branch-and-bound algorithm for convex quadratic integer programming. Math. Program. 135 (2012) 369–395. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Burger, Y. Dong and M. Hintermuller, Exact relaxation for classes of minimization problems with binary constraints. arXiv preprint arXiv:1210.7507 (2012). [Google Scholar]
  7. E. Casas, Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50 (2012) 2355–2372. [Google Scholar]
  8. A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167–188. [Google Scholar]
  9. T.F. Chan and C.-K. Wong, Total variation blind deconvolution. IEEE Trans. Image Process. 7 (1998) 370–375. [CrossRef] [Google Scholar]
  10. C. Clason, F. Kruse and K. Kunisch, Total variation regularization of multi-material topology optimization. ESAIM: Math. Model. Numer. Anal. 52 (2018) 275–303. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. C. Clason and K. Kunisch, Multi-bang control of elliptic systems, in vol. 31 of Annales de l'Institut Henri Poincaré (c) Analysé Non Linéaire. Elsevier (2014) 1109–1130. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Clason, C. Tameling and B. Wirth, Vector-valued multibang control of differential equations. SIAM J. Control Optim. 56 (2018) 2295–2326. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. De Marchi, On the mixed-integer linear-quadratic optimal control with switching cost. IEEE Control Syst. Lett. 3 (2019) 990–995. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. De Marchi and M. Gerdts, Sparse switching times optimization and a sweeping Hessian proximal method, in Operations Research Proceedings 2019. Springer (2020), pp. 89–95. [CrossRef] [Google Scholar]
  15. D. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for denoising. Inverse Probl. 12 (1996) 601. [CrossRef] [Google Scholar]
  16. S. Engel, B. Vexler and P. Trautmann, Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation. IMA J. Numer. Anal. 41 (2021) 2639–2667. [CrossRef] [MathSciNet] [Google Scholar]
  17. O. Exler and K. Schittkowski, A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. 1 (2007) 269–280. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Flaßkamp, T. Murphey and S. Ober-Blöbaum, Discretized switching time optimization problems, in 2013 European Control Conference (ECC). IEEE (2013) 3179–3184. [CrossRef] [Google Scholar]
  19. M. Fornasier and C.-B. Schonlieb, Subspace correction methods for total variation and \ell_1-minimization. SIAM J. Numer. Anal. 47 (2009) 3397–3428. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P.L. Bodic, S.J. Maher, F. Matter, M. Miltenberger, E. Muhmer, E. Muller, M.E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger and J. Witzig, The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020). [Google Scholar]
  21. M. Gerdts, Solving mixed-integer optimal control problems by Branch&Bound: a case study from automobile test-driving with gear shift. Opt. Control Appi. Methods 26 (2005) 1–18. [CrossRef] [Google Scholar]
  22. G. Giorgi and S. Komlósi, Dini derivatives in optimization – Part I. Riv. Mate. le Scienze Econ. Sociali 15 (1992) 3–30. [Google Scholar]
  23. S. Göttlich, A. Potschka and U. Ziegler, Partial outer convexification for traffic light optimization in road networks. SIAM J. Sci. Comput. 39 (2017) B53–B75. [CrossRef] [Google Scholar]
  24. M. Hahn, S. Sager and S. Leyffer, Binary optimal control by trust-region steepest descent. To appear Math. Program. (2022). [Google Scholar]
  25. F.M. Hante, G. Leugering, A. Martin, L. Schewe and M. Schmidt, Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: from modeling to industrial applications, in Industrial mathematics and complex systems. Springer (2017) 77–122. [CrossRef] [Google Scholar]
  26. F.M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55 (2013) 197–225. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Hintermuller and C.N. Rautenberg, Optimal selection of the regularization function in a weighted total variation model. Part I: Modelling and theory. J. Math. Imag. Vision 59 (2017) 498–514. [CrossRef] [Google Scholar]
  28. C.Y. Kaya, Optimal control of the double integrator with minimum total variation. J. Optim. Theory Appi. 185 (2020) 966–981. [CrossRef] [Google Scholar]
  29. C. Kirches, H.G. Bock, J.P. Schlöoder and S. Sager, Mixed-integer NMPC for predictive cruise control of heavy-duty trucks, in 2013 European Control Conference (ECC), IEEE (2013) 4118–4123. [CrossRef] [Google Scholar]
  30. C. Kirches, F. Lenders and P. Manns, Approximation properties and tight bounds for constrained mixed-integer optimal control. SIAM J. Control Optim. 58 (2020) 1371–1402. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Kirches, P. Manns and S. Ulbrich, Compactness and convergence rates in the combinatorial integral approximation decomposition. Math. Program. 188 (2020) 569–598. [Google Scholar]
  32. J. Lellmann, D.A. Lorenz, C.-B. Schöonlieb and T. Valkonen, Imaging with Kantorovich-Rubinstein discrepancy. SIAM J. Imag. Sci. 7 (2014) 2833–2859. [CrossRef] [Google Scholar]
  33. R. Loxton, Q. Lin, V. Rehbock and K.L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: new convergence results. Numer. Algebra Cont. Optim. 2 (2012) 571–599. [CrossRef] [Google Scholar]
  34. P. Manns, Relaxed multibang regularization for the combinatorial integral approximation. arXiv preprint https://arxiv.org/pdf/2011.00205 (2020), submitted. [Google Scholar]
  35. P. Manns and C. Kirches, Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems. ESAIM: COCV 26 (2020). [Google Scholar]
  36. P. Manns and C. Kirches, Multidimensional Sum-Up Rounding for elliptic control systems. SIAM J. Numer. Anal. 58 (2020) 3427–3447. [CrossRef] [MathSciNet] [Google Scholar]
  37. H. Maurer and N.P. Osmolovskii, Second order sufficient conditions for time-optimal bang-bang control. SIAM J. Control Optim. 42 (2004) 2239–2263. [CrossRef] [MathSciNet] [Google Scholar]
  38. E. Newby and M.M. Ali, A trust-region-based derivative free algorithm for mixed integer programming. Comput. Optim. Appl. 60 (2015) 199–229. [CrossRef] [MathSciNet] [Google Scholar]
  39. L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. [Google Scholar]
  40. F. Ruffler and F.M. Hante, Optimal switching for hybrid semilinear evolutions. Nonlinear Anal.: Hybrid Syst. 22 (2016) 215–227. [CrossRef] [MathSciNet] [Google Scholar]
  41. S. Sager, Numerical methods for mixed-integer optimal control problems, Der andere Verlag Töonning, Luöbeck, Marburg (2005). [Google Scholar]
  42. S. Sager, H.-G. Bock and M. Diehl, The integer approximation error in mixed-integer optimal control. Math. Program. Ser. A 133 (2012) 1–23. [CrossRef] [Google Scholar]
  43. S. Sager, M. Jung and C. Kirches, Combinatorial integral approximation. Math. Methods Oper. Res. 73 (2011) 363–380. [CrossRef] [MathSciNet] [Google Scholar]
  44. S. Sager and C. Zeile, On mixed-integer optimal control with constrained total variation of the integer control. submitted (2019). [Google Scholar]
  45. B. Simon, Operator Theory, A comprehensive course in analysis, Part 4. American Mathematical Society, Providence (2015). http://dx.doi.org/10.1090/simon/004. [Google Scholar]
  46. E.M. Stein and R. Shakarchi, Real analysis: measure theory, integration, and Hilbert spaces. Princeton University Press (2009). [Google Scholar]
  47. B. Stellato, B. Ober-Blöobaum and P.J. Goulart, Optimal control of switching times in switched linear systems, in 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE (2016) 7228–7233. [CrossRef] [Google Scholar]
  48. C.R. Vogel and M.E. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17 (1996) 227–238. [CrossRef] [MathSciNet] [Google Scholar]
  49. E. Zeidler, Vol. 109 of Applied functional analysis: main principles and their applications. Springer Science & Business Media (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.