Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 65
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2022061
Published online 20 October 2022
  1. S. Adly, F. Nacry and L. Thibault, Discontinuous sweeping process with prox-regular sets. ESAIM: COCV 23 (2017) 1293–1329. [CrossRef] [EDP Sciences] [Google Scholar]
  2. N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for impulsive partial functional differential inclusions. Nonlin. Anal. Theory, Methods Appl. 69 (2008) 2892–2909. [CrossRef] [Google Scholar]
  3. F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM: COCV 23 (2017) 721–749. [CrossRef] [EDP Sciences] [Google Scholar]
  4. S. Amat and P. Pedregal, A variational approach to implicit ODEs and differential inclusions. ESAIM: COCV 15 (2009) 139–148. [CrossRef] [EDP Sciences] [Google Scholar]
  5. H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA (2014) [Google Scholar]
  6. J-P. Aubin, Boundary-value problems for systems of Hamilton-Jacobi-Bellman inclusions with constraints. SIAM J. Control Optim. 41 (2002) 425–456. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Auslender and M. Teboulle, Duality in optimization problems, asymptotic cones and functions in optimization and variational inequalities. Springer New York (2003). [Google Scholar]
  8. P. Baiti, PG LeFloch and B Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differ. Equ. 172 (2001) 59–82. [CrossRef] [Google Scholar]
  9. M.H.A. Biswas and M.R. Pinho, A maximum principle for optimal control problems with state and mixed constraints. ESAIM: COCV 21 (2015) 939–957. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F.S. De Blasi and G. Pianigiani, Baire category and boundary value problems for ordinary and partial differential inclusions under Caratheodory assumptions. J. Differ. Equ. 243 (2007) 558–577. [CrossRef] [Google Scholar]
  11. L. Bourdin and E. Trelat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales. SIAM J. Control Optim. 51 (2013) 3781–3813. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Bonnard, J.B. Caillau and E. Trelat, Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: COCV 13 (2007) 207–236. [CrossRef] [EDP Sciences] [Google Scholar]
  13. L. Bourdin and E. Trelat, Pontryagin maximum principle for optimal sampled-data control problems. IFAC-Papers OnLine 48 (2015) 80–84. [CrossRef] [Google Scholar]
  14. G. Cavagnari, A. Marigonda and B. Piccoli, Superposition principle for differential inclusions. International Conference on Large-Scale Scientific Computing. Springer, Cham (2017), pp, 201–209. [Google Scholar]
  15. A. Cernea, Some second-order necessary conditions for nonconvex hyperbolic differential inclusion problem. J. Math. Anal. Appl. 253 (2001) 616–639. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Cheng, F. Cong and X. Xue, Boundary value problems of a class of nonlinear partial differential inclusions. Nonlin. Anal.: Real World Appl. 12 (2011) 3095–3102. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.M. Coron and H.M. Nguyen, Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space, ESAIM: COCV 26 (2020) 1–24. [Google Scholar]
  18. J.M. Coron and H.M. Nguyen, Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. SIAM J. Control Optim. 57 (2019) 1127–1156. [CrossRef] [MathSciNet] [Google Scholar]
  19. T.D. Donchev and M. Quincampoix, Nonemptiness of viability kernels for infinitedimensional differential inclusions. Appl. Math. Lett. 16 (2003) 1195–1199. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Frigon, On a critical point theory for multivalued functionals and applications to partial differential inclusions. Nonlin. Anal. 31 (1998) 735–753. [CrossRef] [Google Scholar]
  21. G. Gabor and M. Quincampoix, On attainability of a set by at least one solution to a differential inclusion. Optimization 53 (2004) 563–582. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Hilscher and V. Zeidan, Discrete optimal control: second order optimality conditions. J. Differ. Equ. Appl. 8 (2002) 875–896. [CrossRef] [Google Scholar]
  23. M. Kamenskii, P. Nistri and M. Quincampoix, Singularly perturbed second order differential inclusions by an averaging method. Int. J. Pure Appl. Math. 3 (2002) 343–355. [MathSciNet] [Google Scholar]
  24. M. Kisielewicz, Some optimal control problems for partial differential inclusions. Opuscula Math. 28 (2008) 507–516. [MathSciNet] [Google Scholar]
  25. P.D. Loewen and R.T. Rockafellar, Optimal control of unbounded differential inclusions. SIAM J. Control Optim. 32 (1994) 442–470. [Google Scholar]
  26. E.N. Mahmudov, Approximation and optimization of Darboux type differential inclusions with set-valued boundary conditions. Optim. Lett. 7 (2013) 871–891. [CrossRef] [MathSciNet] [Google Scholar]
  27. E.N. Mahmudov, Necessary and sufficient conditions for discrete and differential inclusions of elliptic type. J. Math. Anal. Appl. 323 (2006) 768–789. [CrossRef] [MathSciNet] [Google Scholar]
  28. E.N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions. Elsevier, Boston, MA, USA (2011). [Google Scholar]
  29. E.N. Mahmudov, Single variable differential and integral calculus. Mathematical analysis, Springer, Paris, France (2013). [Google Scholar]
  30. E.N. Mahmudov, Approximation and optimization of higher order discrete and differential inclusions. Nonlin. Diff. Equat. Appl. NoDEA 21 (2014) 1–26. [CrossRef] [Google Scholar]
  31. E.N. Mahmudov, Optimal control of Cauchy problem for first-order discrete and partial differential inclusions. J. Dyn. Contr. Syst. 15 (2009) 587–610. [CrossRef] [Google Scholar]
  32. E.N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville type differential inclusions. J. Optim. Theory Appl. 177 (2018) 345–375. [Google Scholar]
  33. E.N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints. ESAIM: COCV DOI: https://doi.org/10.1051/cocv/2019018. [Google Scholar]
  34. E.N. Mahmudov, Optimal control of evolution differential inclusions with polynomial linear differential operators. Evol. Equ. Contr. Theory 8 (2019) 603–619. [CrossRef] [Google Scholar]
  35. B.S. Mordukhovich and J.-P. Raymond, Neumann boundary control of hyperbolic equations with pointwise state constraints. SIAM J. Control Optim. 43 (2005) 1354–1372. [CrossRef] [MathSciNet] [Google Scholar]
  36. B.S. Mordukhovich and J.-P. Raymond, Dirichlet boundary control of hyperbolic equations in the presence of state constraints. Appl. Math. Optim. 49 (2004) 145–157. [CrossRef] [MathSciNet] [Google Scholar]
  37. B.S. Mordukhovich and L. Wang, Optimal control of neutral functional-differential inclusions. SIAM J. Control Optim. 43 (2004) 111–136. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Orive and E. Zuazua, Long-time behavior of solutions to a nonlinear hyperbolic relaxation system. J. Differ. Equ. 228 (2006) 17–38. [CrossRef] [Google Scholar]
  39. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. John Wiley and Sons, Inc., New York (1962). [Google Scholar]
  40. M. Quincampoix and V.M. Veliov, Solution tubes to differential inclusions within a 25 collection of sets. Contr. Cyber. 31 (2002) 847–862. [Google Scholar]
  41. K. Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. B 32 (2011) 803–822. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.