Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 34
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2022031
Published online 02 June 2022
  1. J. Auriol and F. Di Meglio, Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Autom. J. IFAC 71 (2016) 300–307. [Google Scholar]
  2. G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, Vol. 88. Birkhäuser/Springer [Cham] (2016). [CrossRef] [Google Scholar]
  3. J.-M. Coron, L. Hu and G. Olive, Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Autom. J. IFAC 84 (2017) 95–100. [CrossRef] [Google Scholar]
  4. J.-M. Coron and H.-M. Nguyen, Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. SIAM J. Control Optim. 57 (2019) 1127–1156. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-M. Coron and H.-M. Nguyen, Null-controllability of linear hyperbolic systems in one dimensional space. Syst. Control Lett. 148 (2021) 104851. [CrossRef] [Google Scholar]
  6. L. Hu, Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems. SIAM J. Control Optim. 53 (2015) 3383–3410. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Hu, F. Di Meglio, R. Vazquez and M. Krstic, Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control 61 (2016) 3301–3314. [Google Scholar]
  8. G. Kozyreff, A.G. Vladimirov and P. Mandel, Global coupling with time delay in an array of semiconductor laser. Phys. Rev. Lett. 85 (2000) 3809–3812. [CrossRef] [PubMed] [Google Scholar]
  9. T. Li, Vol. 3 of Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences & Higher Education Press (2010). [CrossRef] [Google Scholar]
  10. T. Li, X. Lu and B. Rao, Exact boundary synchronization for a coupled system of wave equations with Neumann boundary controls. Chin. Ann. Math. Ser. B 39 (2018) 233–252. [CrossRef] [Google Scholar]
  11. T. Li, X. Lu and B. Rao, Approximate boundary null controllability and approximate boundary synchronization for a coupled system of wave equations with Neumann boundary controls. Contemporary Computational Mathematics — a Celebration of the 80th Birthday of Ian Sloan (edited by J. Dick, F.Y. Kuo, H. Wozniakowski). Springer-Verlag (2018) 837–868. [CrossRef] [Google Scholar]
  12. T. Li, X. Lu and B. Rao, Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls. ESAIM: COCV 27 (2021) S7. [CrossRef] [EDP Sciences] [Google Scholar]
  13. T. Li and B. Rao, Synchronisation exacte d’un système couplé d’équations des ondes par des contrôles frontières de Dirichlet. C.R. Math. Acad. Sci. Paris 350 (2012) 767–772. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Li and B. Rao, Exact synchronization for a coupled system of wave equation with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160. [CrossRef] [Google Scholar]
  15. T. Li and B. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls. Asymptot. Anal. 86 (2014) 199–226. [MathSciNet] [Google Scholar]
  16. T. Li and B. Rao, A note on the exact synchronization by groups for a coupled system of wave equations. Math. Methods Appl. Sci. 38 (2015) 241–246. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Li and B. Rao, Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary control. J. Math. Pures Appl. 105 (2016) 86–101. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Li and B. Rao, On the approximate boundary synchronization for a coupled system of wave equations: direct and indirect boundary controls. ESAIM: COCV 24 (2019) 1675–1704. [Google Scholar]
  19. T. Li and B. Rao, Boundary Synchronization for Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications. Subseries in Control, 94. Birkhäauser (2019). [Google Scholar]
  20. T. Li and B. Rao, Approximate boundary synchronization by groups for a couples system of wave equations with coupled Robin boundary conditions. ESAIM: COCV 27 (2021) 10. [CrossRef] [EDP Sciences] [Google Scholar]
  21. T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. [CrossRef] [EDP Sciences] [Google Scholar]
  22. T. Li, B. Rao and Y. Wei, Generalized exact boundary synchronization for a coupled system of wave equations. Discrete Cantin. Dyn. Syst. 34 (2014) 2893–2905. [CrossRef] [Google Scholar]
  23. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systemes Distribués, Vol. 1, Masson, Paris (1988). [Google Scholar]
  24. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Lu, Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 40 (2019) 79–96. [CrossRef] [Google Scholar]
  26. X. Lu and T. Li, Exact boundary controllability of weak solutions for a kind of first order hyperbolic system — the constructive method. Chin. Ann. Math. Ser. B 42 (2021) 643–676. [CrossRef] [MathSciNet] [Google Scholar]
  27. X. Lu and T. Li, Exact boundary controllability of weak solutions for a kind of first order hyperbolic system — The HUM method. Chin. Ann. Math. Ser. B 43 (2022) 1–16. [Google Scholar]
  28. X. Lu, T. Li and B. Rao, Exact boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary controls on a general bounded domain. SIAM J. Control Optim. 59 (2021) 4457–4480. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Univ. Press, Cambridge, UK (2002). [Google Scholar]
  30. J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974) 79–86. [CrossRef] [MathSciNet] [Google Scholar]
  31. D.L. Russell, Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  32. S.H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization. Sci. Am. 269 (1993) 102–109. [CrossRef] [PubMed] [Google Scholar]
  33. F. Varela, J. Lachaux, E. Rodriguez and J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurasci. 2 (2001) 229–239. [CrossRef] [PubMed] [Google Scholar]
  34. N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 2nd ed. The M.I.T. Press, Cambridge, Mass., John Wiley & Sons, Inc., New York-London (1961). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.