Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 55
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2022051
Published online 18 August 2022
  1. J.-P. Aubin, Viability Theory. Birkhäuser, Boston-Basel-Berlin (1991). [Google Scholar]
  2. J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston-Basel-Berlin (1990). [Google Scholar]
  3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). [Google Scholar]
  4. G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. 20 (1993) 1123–1134. [CrossRef] [MathSciNet] [Google Scholar]
  5. E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15 (1990) 1713–1742. [Google Scholar]
  6. E.N. Barron and R. Jensen, Optimal control and semicontinuous viscosity solutions. Proc. Am,. Math. Soc. 113 (1991) 397–402. [CrossRef] [Google Scholar]
  7. J. Bernis and P. Bettiol, Solutions to the Hamilton-Jacobi equation for Bolza problems with discontinuous time dependent data. ESAIM: COCV 26 (2020) 35 pages. [CrossRef] [EDP Sciences] [Google Scholar]
  8. P. Bettiol and R.B. Vinter, The Hamilton Jacobi equation for optimal control problems with discontinuous time dependence. SIAM J. Control Optim. 55 (2017) 1199–1225. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Vol. 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhauser, Boston (2004). [Google Scholar]
  10. L. Cesari, Optimization-theory and applications, problems with ordinary differential equations. Springer, New York (1983). [Google Scholar]
  11. M.G. Crandall and P.-L. Lions, Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations. Illinois J. Math. 31 (1987) 665–688. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Dal Maso and H. Frankowska, Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities. ESAIM: COCV 5 (2000) 369–393. [CrossRef] [EDP Sciences] [Google Scholar]
  13. H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. [Google Scholar]
  14. H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (2013) 725–747. [CrossRef] [Google Scholar]
  15. H. Frankowska, S. Plaskacz and T. Rzezuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation. J. Differ. Equ. 116 (1995) 265–305. [CrossRef] [Google Scholar]
  16. G.H. Galbraith, Extended Hamilton-Jacobi characterization of value functions in optimal control. SIAM J. Control Optim. 39 (2000) 281–305. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.W. Hagood and B.S. Thomson, Recovering a function from a Dini derivative. Amer. Math. Monthly 113 (2006) 34–46. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Ishii, Uniqueness of unbounded solutions of Hamilton-Jacobi equations. Indiana Univ. Math. J. 33 (1984) 721–748. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Ishii, A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 137–154. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Misztela, The value function representing Hamilton-Jacobi equation with Hamiltonian depending on value of solution. ESAIM: COCV 20 (2014) 771–802. [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Misztela, On nonuniqueness of solutions of Hamilton-Jacobi-Bellman equations. Appl. Math. Optim. 77 (2018) 599–611. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Misztela, Representation of Hamilton-Jacobi equation in optimal control theory with compact control set. SIAM J. Control Optim. 57 (2019) 53–77. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Misztela, Representation of Hamilton-Jacobi equation in optimal control theory with unbounded control set. J. Optim. Theory Appl. 185 (2020) 361–383. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Misztela and S. Plaskacz, An initial condition reconstruction in Hamilton-Jacobi equations. Nonlinear Anal. 200 (2020), 15 pages. [Google Scholar]
  25. A. Plaksin, Viscosity Solutions of Hamilton-Jacobi-Bellman-Isaacs equations for time-delay systems. SIAM J. Control Optim. 59 (2021) 1951–1972. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Plaskacz and M. Quincampoix, On representation formulas for Hamilton Jacobi's equations related to calculus of variations problems. Topol. Methods Nonlinear Anal. 20 (2002) 85–118. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Rampazzo, C. Sartori, Hamilton-Jacobi-Bellman equations with fast gradient-dependence. Indiana Univ. Math. J. 49 (2000) 1043–1077. [CrossRef] [Google Scholar]
  28. R.T. Rockafellar, Optimal arcs and the minimum value function in problems of Lagrange. Trans. Amer. Math. Soc. 180 (1973) 53–84. [CrossRef] [MathSciNet] [Google Scholar]
  29. R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange. Adv. Math. 15 (1975) 312–333. [CrossRef] [Google Scholar]
  30. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.