Open Access
Issue |
ESAIM: COCV
Volume 28, 2022
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 38 | |
DOI | https://doi.org/10.1051/cocv/2022049 | |
Published online | 18 August 2022 |
- E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329–371. [CrossRef] [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs. Oxford University Press, New York (2000). [Google Scholar]
- G. Bellettini, A. Elshorbagy, M. Paolini and R. Scala, On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Ann. Mat. Pura Appi. 199 (2020) 445—477. [CrossRef] [Google Scholar]
- G. Bellettini, A. Elshorbagy and R. Scala, The L1-relaxed area of the graph of the vortex map. Preprint arXiv:2107.07236 (2021). [Google Scholar]
- G. Bellettini, R. Marziani and R. Scala, A non-parametric Plateau problem with partial free boundary. Preprint arXiv:2201.06145 (2022). [Google Scholar]
- G. Bellettini and M. Paolini, On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3 (2010) 371–386. [CrossRef] [MathSciNet] [Google Scholar]
- G. Bellettini, M. Paolini and L. Tealdi, On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV 22 (2015) 29–63. [Google Scholar]
- G. Bellettini, M. Paolini and L. Tealdi, Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity. Ann. Mat. Pura Appi. 195 (2016) 2131–2170. [CrossRef] [Google Scholar]
- H. Brezis, P. Mironescu and A. Ponce, W1;1-maps with values into S1. Geometric analysis of PDE and several complex variables, 69—100, Contemp. Math., 368, Amer. Math. Soc., Providence, RI (2005). [CrossRef] [Google Scholar]
- G. Dal Maso, Integral representation on BV (Q) of T-limits of variational integrals. Manuscr. Math. 30 (1980) 387–416. [Google Scholar]
- E. De Giorgi, On the relaxation of functionals defined on cartesian manifolds. In “Developments in Partial Differential Equations and Applications in Mathematical Physics” (Ferrara 1992). Plenum Press, New York (1992). [Google Scholar]
- G. De Philippis, Weak notions of Jacobian determinant and relaxation. ESAIM: COCV 18 (2012) 181–207. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Giaquinta, G. Modica and J. Soucek, “Cartesian Currents in the Calculus of Variations I”, Vol. 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). [Google Scholar]
- M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations II. Variational Integrals. Vol. 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg (1998). [Google Scholar]
- E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). [Google Scholar]
- C. Hamburger, Some properties of the degree for a class of Sobolev maps. Proc: Math. Phys. Eng. Sci. 455 (1999) 2331–2349. [CrossRef] [MathSciNet] [Google Scholar]
- R.L. Jerrard and H.M. Soner, Functions of bounded higher variation. Indiana Univ. Math. J. 51 (2002) 645–677. [CrossRef] [Google Scholar]
- S. Muller, T. Qi and B.S. Yan, Ona new class of elastic deformations not allowing for cavitation. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 217–243. [CrossRef] [MathSciNet] [Google Scholar]
- P. Mironescu, Sobolev maps on manifolds: degree, approximation, lifting. Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 413–436. [CrossRef] [Google Scholar]
- E. Paolini, On the relaxed total variation of singular maps. Manuscr. Math. 111 (2003) 499–512. [CrossRef] [Google Scholar]
- A.C. Ponce and J. Van Schaftingen, Clousure of smooth maps in W 1,p(B3,S2). Differ. Integr. Equ. 22 (2009) 881–900. [Google Scholar]
- R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the area functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020) 491–564. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.