Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 64
Number of page(s) 34
DOI https://doi.org/10.1051/cocv/2022060
Published online 20 October 2022
  1. A. Agrachev and Y. Sachkov, Vol. 87 of Control theory from the geometric viewpoint. Springer Science & Business Media (2013). [Google Scholar]
  2. M. Annunziato and A. Borzì, A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237 (2013) 487–507. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Bellman, Dynamic Programming. Princeton Univ. Press, Princeton, New Jersey (1957). [Google Scholar]
  4. Berret, Bastien, and F. Jean, Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction. PLoS Comput. Biol. 16 (2020) e1007414. [CrossRef] [Google Scholar]
  5. D. Bertsimas and D.B. Brown, Constrained stochastic LQC: a tractable approach. IEEE Trans Autom. Control 52 (2007) 1826–1841. [CrossRef] [Google Scholar]
  6. C. Bes and S. Sethi, Solution of a class of stochastic linear-convex control problems using deterministic equivalents. J. Optim. Theory Appl. 62 (1989) 17–27. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Betts, Survey of numerical methods for trajectory optimization, J. Guid. Control Dyn. 21 (1998) 193–207. [CrossRef] [Google Scholar]
  8. J.-M. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. [Google Scholar]
  9. P.T. Boggs and J.W. Tolle, Sequential quadratic programming. Acta Numer. 4 (1995) 1–51. [CrossRef] [Google Scholar]
  10. R. Bonalli, Optimal control of aerospace systems with control-state constraints and delays, Ph.D. thesis. Sorbonne Université (2018). [Google Scholar]
  11. R. Bonalli, B. Hérissé and E. Trélat, Analytical initialization of a continuation-based indirect method for optimal control of endo-atmospheric launch vehicle systems, in IFAC World Congress (2017). [Google Scholar]
  12. R. Bonalli, B. Hérissé and E. Trélat, Solving Optimal Control Problems for Delayed Control-Affine Systems with Quadratic Cost by Numerical Continuation, in American Control Conference (2017). [Google Scholar]
  13. R. Bonalli, B. Hérissé and E. Trélat, Continuity of Pontryagin extremals with respect to delays in nonlinear optimal control. SIAM J. Control Optim. 57 (2019) 1440–1466. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Bonalli, B. Hérissé and E. Trélat, Optimal control of endo-atmospheric launch vehicle systems: geometric and computational issues. IEEE Trans. Autom. Control 65 (2019) 2418–2433. [Google Scholar]
  15. L. Bourdin and E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problem on time scales. SIAM J. Control Optim. 51 (2013) 3781–3813. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Bryson, Applied optimal control: optimization, estimation and control. CRC Press (1975). [Google Scholar]
  17. R. Carmona, vol. 1 of Lectures on BSDEs, stochastic control, and stochastic differential games with financial applications. SIAM (2016). [Google Scholar]
  18. Y. Chitour, F. Jean and E. Trelat, Singular trajectories of control-ane systems. SIAM J. Control Optim. 47 (2008) 1078–1095. [CrossRef] [MathSciNet] [Google Scholar]
  19. Damm, Tobias, H. Mena, and T. Stillfjord, Numerical solution of the finite horizon stochastic linear quadratic control problem. Numer. Linear Algebra Appl. 24 (2017) e2091. [CrossRef] [Google Scholar]
  20. M. Diehl and F. Messerer, Local convergence of generalized Gauss-Newton and sequential convex programming, in Conference on Decision and Control (2019). [Google Scholar]
  21. Q.T. Dinh and M. Diehl, Local convergence of sequential convex programming for nonconvex optimization, in Recent Advances in Optimization and its Applications in Engineering. Springer (2010) 93–102. [CrossRef] [Google Scholar]
  22. H. Frankowska, H. Zhang and X. Zhang, Stochastic optimal control problems with control and initial-final states constraints. SIAM J. Control Optim. 56 (2018) 1823–1855. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Gamkrelidze, Principles of optimal control theory, vol. 7. Springer Science & Business Media (2013). [Google Scholar]
  24. E. Gobet, Monte-Carlo methods and stochastic processes: from linear to non-linear. CRC Press (2016). [Google Scholar]
  25. T. Haberkorn and E. Tréelat, Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49 (2011) 1498–1522. [CrossRef] [MathSciNet] [Google Scholar]
  26. O. Kazuhide, M. Goldshtein and P. Tsiotras, Optimal covariance control for stochastic systems under chance constraints. IEEE Control Syst. Lett. 2 (2018) 266–271. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Kleindorfer and K. Glover, Linear convex stochastic optimal control with applications in production planning. IEEE Trans. Autom. Control 18 (1973) 56–59. [CrossRef] [Google Scholar]
  28. D. Kuhn, W. Wiesemann and A. Georghiou, Primal and dual linear decision rules in stochastic and robust optimization. Math. Program. 130 (2011) 177–209. [CrossRef] [MathSciNet] [Google Scholar]
  29. H.J. Kushner, Numerical methods for stochastic control problems in continuous time. SIAM J. Control Optim. 28 (1990) 999–1048. [CrossRef] [MathSciNet] [Google Scholar]
  30. H.J. Kushner and L.F. Martins, Numerical methods for stochastic singular control problems. SIAM J. Control Optim. 29 (1991) 1443–1475. [CrossRef] [MathSciNet] [Google Scholar]
  31. H.J. Kushner and F.C. Schweppe, A maximum principle for stochastic control systems. J. Math. Anal. Appl. 8 (1964) 287–302. [CrossRef] [MathSciNet] [Google Scholar]
  32. J.-F. Le Gall, vol. 274 of Brownian motion, martingales, and stochastic calculus. Springer (2016). [Google Scholar]
  33. T. Levajkoviéc, H. Mena and L.-M. Pfurtscheller, Solving stochastic LQR problems by polynomial chaos. IEEE Control Syst. Lett. 2 (2018) 641–646. [CrossRef] [MathSciNet] [Google Scholar]
  34. T. Lew, R. Bonalli and M. Pavone, Chance-constrained sequential convex programming for robust trajectory optimization, in European Control Conference (2020). [Google Scholar]
  35. P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I. Commun. Partial Differ. Equ. 8 (1983) 1101–1174. [CrossRef] [Google Scholar]
  36. Z. Lu, Sequential Convex Programming Methods for A Class of Structured Nonlinear Programming. Tech. rep. (2013). [Google Scholar]
  37. Y. Mao, D. Dueri, M. Szmuk and B. Açikmese, Successive convexification of non-convex optimal control problems with state constraints. IFAC-PapersOnLine 50 (2017) 4063–4069. [CrossRef] [Google Scholar]
  38. P.S. Maybeck, Stochastic models, estimation, and control. Academic Press (1982). [Google Scholar]
  39. J. Nocedal and S. Wright, Numerical Optimization. Springer (1999). [Google Scholar]
  40. F. Palacios-Gomez, L. Lasdon and M. Engquist, Nonlinear optimization by successive linear programming. Manag. Sci. 28 (1982) 1106–1120. [CrossRef] [Google Scholar]
  41. S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [Google Scholar]
  42. S. Peng, Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 30 (1992) 284–304. [CrossRef] [MathSciNet] [Google Scholar]
  43. L. Pontryagin, Mathematical theory of optimal processes. Routledge (2018). [Google Scholar]
  44. J. Potter, A matrix equation arising in statistical filter theory. Rep. RE-9, Experimental Astronomy Laboratory, Massachusetts Institute of Technology (1965). [Google Scholar]
  45. M.A. Rami and X.Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans. Autom. Control 45 (2000) 1131–1143. [CrossRef] [Google Scholar]
  46. R.T. Rockafellar and R.J.B. Wets, Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SIAM J. Control Optim. 28 (1990) 810–822. [CrossRef] [MathSciNet] [Google Scholar]
  47. A. Shapiro and A. Nemirovski, On complexity of stochastic programming problems, in Continuous optimization. Springer (2005) pp. 111–146. [CrossRef] [Google Scholar]
  48. I.A. Shvartsman and R.B. Vinter, Regularity properties of optimal controls for problems with time-varying state and control constraints. Nonlinear Anal.: Theory, Methods Appl. 65 (2006) 448–474. [CrossRef] [Google Scholar]
  49. S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. [CrossRef] [MathSciNet] [Google Scholar]
  50. E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Syst. 6 (2000) 511–541. [CrossRef] [Google Scholar]
  51. E. Trélat, Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154 (2012) 713–758. [Google Scholar]
  52. Y. Wang, D. Yang, J. Yong and Z. Yu, Exact controllability of linear stochastic differential equations and related problems. Am. Inst. Math. Sci. 7 (2017) 305–345. [Google Scholar]
  53. D.D. Yao, S. Zhang and X.Y. Zhou, Stochastic linear-quadratic control via semidefinite programming. SIAM J. Control Optim. 40 (2001) 801–823. [CrossRef] [MathSciNet] [Google Scholar]
  54. J. Yong and X.Y. Zhou, Vol. 43 of Stochastic controls: Hamiltonian systems and HJB equations. Springer Science & Business Media (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.