Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 57
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2022052
Published online 12 August 2022
  1. V. Agostiniani, M. Fogagnolo and L. Mazzieri, Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. Invent. Math. 222 (2020) 1033–1101. [CrossRef] [MathSciNet] [Google Scholar]
  2. F.J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976) viii+199. [Google Scholar]
  3. L. Ambrosio, Calculus, heat flow and curvature-dimension bounds in metric measure spaces, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures (2018) 301–340. [Google Scholar]
  4. L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159 (2001) 51–67. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Anal. 10 (2002) 111–128. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Ambrosio, E. Bruè and D. Semola, Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces. Geom. Funct. Anal. 29 (2019) 949–1001. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266 (2014) 4150–4188. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with α-finite measure. Trans. Amer. Math. Soc. 367 (2015) 4661–4701. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163 (2014) 1405–1490. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Ambrosio and S. Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, in Measure theory in non-smooth spaces (2017) 1–51. [Google Scholar]
  11. L. Ambrosio, M. Miranda and D. Pallara, Special functions of bounded variation in doubling metric measure spaces. Quad. Mat. 14 (2004) 1–45. [Google Scholar]
  12. L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Amer. Math. Soc. 262 (2019) v+121 pp. [Google Scholar]
  13. G. Antonelli, E. Bruè, M. Fogagnolo and M. Pozzetta, On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth. Calc. Var. Partial Differ. Equ. 61 (2022) 77. [CrossRef] [PubMed] [Google Scholar]
  14. G. Antonelli, E. Bruè and D. Semola, Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces. Anal. Geom. Metr. Spaces 7 (2019) 158–178. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Antonelli, M. Fogagnolo and M. Pozzetta, The isoperimetric problem on Riemannian manifolds via Gromov-Hausdorff asymptotic analysis (2021). Preprint arXiv:2101.12711 [Google Scholar]
  16. G. Antonelli, E. Pasqualetto and M. Pozzetta, Isoperimetric sets in spaces with lower bounds on the Ricci curvature. Nonlinear Anal. 220 (2022) 112839. [CrossRef] [Google Scholar]
  17. G. Antonelli, E. Pasqualetto, M. Pozzetta and D. Semola, Sharp isoperimetric comparison and asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds (2022). Preprint arXiv:2201.04916 [Google Scholar]
  18. Z.M. Balogh and A. Kristály, Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature. Mathematische Annalen (2022) Submitted for publication. [Google Scholar]
  19. C. Bavard and P. Pansu, Sur le volume minimal de ℝ2. Ann. Scientif. l'École Normale Supérieure 19 (1986) 479–490. [Google Scholar]
  20. V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, Ph.D. thesis, Institut Fourier (2003). https://tel.archives-ouvertes.fr/tel-00004317v1/document. [Google Scholar]
  21. V. Bayle, A differential inequality for the isoperimetric profile. Int. Math. Res. Not. (2004) 311–342. [CrossRef] [Google Scholar]
  22. V. Bayle and C. Rosales, Some isoperimetric comparison theorems for convex bodies in Riemannian Manifolds. Indiana Univ. Math. J. 54 (2005) 1371–1394. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Bonicatto, E. Pasqualetto and T. Rajala, Indecomposable sets of finite perimeter in doubling metric measure spaces. Calc. Variat. Partial Differ. Equ. 59 (2020) 1–39. [CrossRef] [Google Scholar]
  24. S. Brendle, Sobolev inequalities in manifolds with nonnegative curvature. Submitted of publication Commun. Pure Appl. Math. (2021). [Google Scholar]
  25. E. Bruè, A. Naber and D. Semola, Boundary regularity and stability for spaces with Ricci bounded below. Invent. Math. 228 (2022) 777–891. [CrossRef] [MathSciNet] [Google Scholar]
  26. E. Bruè, E. Pasqualetto and D. Semola, Rectifiability of RCD(K,N) spaces via δ-splitting maps. Ann. Fenn. Math. 46 (2021) 465–482. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Carlotto, O. Chodosh and M. Eichmair, Effective versions of the positive mass theorem. Invent. Math. 206 (2016) 975–1016. [CrossRef] [MathSciNet] [Google Scholar]
  28. F. Cavalletti and E. Milman, The globalization theorem for the Curvature-Dimension condition. Invent. Math. 226 (2021) 1–137. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Cheeger and T.H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144 (1996) 189–237. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46 (1997) 406–480. [CrossRef] [Google Scholar]
  31. J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54 (2000) 13–35. [Google Scholar]
  32. J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54 (2000) 37–74. [Google Scholar]
  33. O. Chodosh, Large isoperimetric regions in asymptotically hyperbolic manifolds. Commun. Math. Phys. 343 (2016) 393–443. [CrossRef] [Google Scholar]
  34. O. Chodosh, M. Eichmair and A. Volkmann, Isoperimetric structure of asymptotically conical manifolds. J. Differ. Geom. 105 (2017) 1–19. [CrossRef] [Google Scholar]
  35. T.H. Colding, Ricci curvature and volume convergence. Ann. Math. 145 (1997) 477–501. [CrossRef] [MathSciNet] [Google Scholar]
  36. G. De Philippis and N. Gigli, Non-collapsed spaces with Ricci curvature bounded from below. J. Éccol. Polytech. Math. 5 (2018) 613–650. [CrossRef] [Google Scholar]
  37. M. Eichmair and J. Metzger, Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94 (2013) 159–186. [CrossRef] [Google Scholar]
  38. M. Eichmair and J. Metzger, Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. Mathemat. 194 (2013) 591–630. [CrossRef] [Google Scholar]
  39. M. Erbar, K. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201 (2015) 993–1071. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Galli and M. Ritorée, Existence of isoperimetric regions in contact sub-Riemannian manifolds. J. Math. Anal. Appl. 397 (2013) 697–714. [CrossRef] [MathSciNet] [Google Scholar]
  41. N. Gigli, The splitting theorem in non smooth context (2013), Preprint arXiv:1302.5555. [Google Scholar]
  42. N. Gigli, On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc. 236 (2015) 1113. [Google Scholar]
  43. N. Gigli, A. Mondino and G. Savarée, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. 111 (2015) 1071–1129. [MathSciNet] [Google Scholar]
  44. P. Hajlasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000) x+101. [Google Scholar]
  45. Y. Kitabeppu, A Bishop-type inequality on metric measure spaces with Ricci curvature bounded below. Proc. Amer. Math. Soc. 145 (2017) 3137–3151. [CrossRef] [MathSciNet] [Google Scholar]
  46. G.P. Leonardi, M. Ritoré and E. Vernadakis, Isoperimetric inequalities in unbounded convex bodies. Mem. AMS (2016) Submitted for publication. [Google Scholar]
  47. J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169 (2009) 903–991. [CrossRef] [MathSciNet] [Google Scholar]
  48. M. Miranda, Jr., Functions of bounded variation on “good” metric spaces". J. Math. Pures Appl. 82 (2003) 975–1004. [CrossRef] [MathSciNet] [Google Scholar]
  49. M. Miranda, Jr., D. Pallara, F. Paronetto and M. Preunkert, Heat semigroup and functions of bounded variation on Riemannian manifolds. J. Reine Angew. Math. 613 (2007) 99–119. [MathSciNet] [Google Scholar]
  50. A. Mondino and A. Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds. J. Eur. Math. Soc. 21 (2014) 1809–1854. [Google Scholar]
  51. A. Mondino and S. Nardulli, Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions. Commun. Anal. Geom. 24 (2016) 115–138. [CrossRef] [Google Scholar]
  52. F. Morgan, Geometric measure theory: a beginner’s guide, 3rd edn. Academic Press (2000). [Google Scholar]
  53. F. Morgan and D.L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49 (2000) 1017–1041. [CrossRef] [Google Scholar]
  54. F. Morgan and M. Ritorée, Isoperimetric regions in cones. Trans. Amer. Math. Soc. 354 (2002) 2327–2339. [CrossRef] [MathSciNet] [Google Scholar]
  55. A.E. Muñoz Flores and S. Nardulli, Local Holder continuity of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry. Geom. Dedicata 201 (2019) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  56. A.E. Muñoz Flores and S. Nardulli, Generalized compactness for finite perimeter sets and applications to the isoperimetric problem. J. Dyn. Control Syst. 28 (2022) 59–69. [CrossRef] [MathSciNet] [Google Scholar]
  57. A.E. Muñoz Flores and S. Nardulli, The isoperimetric problem of a complete Riemannian manifold with a finite number of C0-asymptotically Schwarzschild ends. Comm. Anal. Geom. 28 (2020) 1577–1601. [CrossRef] [MathSciNet] [Google Scholar]
  58. S. Nardulli, Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile. Asian J. Math. 18 (2014) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  59. M. Novaga, E. Paolini, E. Stepanov and V.M. Tortorelli, Isoperimetric clusters in homogeneous spaces via concentration compactness. J. Geometr. Anal. (2021) [Google Scholar]
  60. T. Rajala, Local Poincarée inequalities from stable curvature conditions on metric spaces. Calc. Var. 44 (2012) 477–494. [CrossRef] [Google Scholar]
  61. R. Resende de Oliveira, On clusters and the multi-isoperimetric profile in Riemannian manifolds with bounded geometry. J. Dyn. Control Syst. (2021) [Google Scholar]
  62. M. Ritorée, The isoperimetric problem in complete surfaces of nonnegative curvature. J. Geom. Anal. 11 (2001) 509–517. [CrossRef] [MathSciNet] [Google Scholar]
  63. M. Ritorée and C. Rosales, Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Amer. Math. Soc. 356 (2004) 4601–4622. [CrossRef] [MathSciNet] [Google Scholar]
  64. Y. Shi, The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature. Int. Math. Res. Notices 2016 (2016) 7038–7050. [Google Scholar]
  65. K.-T. Sturm, On the geometry of metric measure spaces. I. Acta Math. 196 (2006) 65–131. [CrossRef] [MathSciNet] [Google Scholar]
  66. K.-T. Sturm, On the geometry of metric measure spaces. II. Acta Math. 196 (2006) 133–177. [CrossRef] [MathSciNet] [Google Scholar]
  67. C. Villani, Optimal transport. Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.