Open Access
Volume 29, 2023
Article Number 16
Number of page(s) 24
Published online 27 February 2023
  1. F. Abdallah, D. Mercier and S. Nicaise, Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evol. Equ. Control Theory 2 (2013) 1-33. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary. Asymp. Anal. 119 (2020) 221-280. [Google Scholar]
  3. M. Akil, I. Issa and A. Wehbe, Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Math. Control Related Fields (2021) doi:10.3934/mcrf.2021059. [Google Scholar]
  4. K. Ammari, M. Dimassi and M. Zerzeri, The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam. J. Diff. Equ. 257 (2014) 3501-3520. [CrossRef] [Google Scholar]
  5. K. Ammari and M. Tucsnak, Stabilization of Bernouilli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39 (2000) 1160-1181. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM: COCV 6 (2001) 361-386. [CrossRef] [EDP Sciences] [Google Scholar]
  7. W. Arendt and C.J.K. Batty, Tauberian theorems and stability of one-parameter of semi-groups. Trans. Amer. Math. Soc. 305 (2) (1988) 837-852. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455-478. [Google Scholar]
  9. C. Castro and E. Zuazua, Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass. Math. Comput. Model. 32 (2000) 955-969. [CrossRef] [Google Scholar]
  10. S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Partial Differ. Equ. 19 (1994) 213-243. [CrossRef] [Google Scholar]
  11. B. Dekoninck and S. Nicaise, Control of networks of Euler-Bernoulli beams. ESAIM : COCV 4 (1999) 57-81. [CrossRef] [EDP Sciences] [Google Scholar]
  12. A.-R. Liu, C.-H. Liu, J.-Y. Fu, Y.-L. Pi, Y.-H. Huang and J.-P. Zhang, A method of reinforcement and vibration reduction of girder bridges using shape memory alloy cables. Int. J. Struct. Stab. Dyn. 17 (2017) 1750076. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Majkut, Eigenvalue based inverse model of beam for structural modification and diagnostics. Part I: Theoretical formulation. Latin Am. J. Solids Struct. 7 (2009) 423-436. [Google Scholar]
  14. D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams. J. Math. Anal. Appi. 337 (2007) 174-196. [Google Scholar]
  15. D. Mercier and V. Régnier, Control of a network of Euler-Bernoulli beams. J. Math. Anal. Appi. 342 (2008) 874-894. [CrossRef] [Google Scholar]
  16. D. Mercier and V. Réegnier, Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses. Collect. Math. 60 (2009) 307-334. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Mercier and V. Régnier, Decay rate of the Timoshenko system with one boundary damping. Evol. Equ. Control Theory 8 (2019) 423-445. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). [CrossRef] [Google Scholar]
  19. J. Poschel, E. Trubowitz, Vol. 130 of Inverse Spectral Theory, Pure and Applied Mathematics. Academic Press, Boston, MA (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.