Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 10
Number of page(s) 57
DOI https://doi.org/10.1051/cocv/2022090
Published online 19 January 2023
  1. G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences. Springer-Verlag, New York (2002). [Google Scholar]
  2. G. Allaire and F. Jouve, A level-set method for vibration and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194 (2005) 3269–3290. [CrossRef] [Google Scholar]
  3. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [Google Scholar]
  4. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes and G. Wells, The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (2015) 10.11588/ans.2015.100.20553. [Google Scholar]
  5. H.W. Alt, Linear Functional Analysis. Universitext, Springer-Verlag London, London (2016). [Google Scholar]
  6. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1 (1993) 55–69. [CrossRef] [Google Scholar]
  7. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  8. P.R.S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012) 235–257. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.R.S. Antunes and E. Oudet, Numerical results for extremal problem for eigenvalues of the Laplacian, in Shape Optimization and Spectral Theory. De Gruyter Open, Warsaw (2017), pp. 398–411. [CrossRef] [Google Scholar]
  10. H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces. MOS-SIAM Series on Optimization, vol. 17, 2nd edn., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA (2014). [Google Scholar]
  11. S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, D. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.9. Argonne National Laboratory (2018). [Google Scholar]
  12. S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, Efficient management of parallelism in object-oriented numerical software libraries, in E. Arge, A.M. Bruaset and H.P. Langtangen (editors), Modern Software Tools for Scientific Computing. Birkhauser Press (1997) 163–202. [CrossRef] [Google Scholar]
  13. M.P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications. Springer (2004). [Google Scholar]
  14. L. Blank, H. Garcke, M.H. Farshbaf-Shaker and V. Styles, Relating phase field and sharp interface approaches to structural topology optimization. ESAIM: COCV 20 (2014) 1025–1058. [CrossRef] [EDP Sciences] [Google Scholar]
  15. L. Blank and C. Rupprecht, An extension of the projected gradient method to a Banach space setting with application in structural topology optimization. SIAM J. Control Optim. 55 (2017) 1481–1499. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Eur. J. Appl. Math. 2 (1991) 233–280. [CrossRef] [Google Scholar]
  17. B. Bogosel and E. Oudet, Qualitative and numerical analysis of a spectral problem with perimeter constraint. SIAM J. Control Optim. 54 (2016) 317–340. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Bogosel and B. Velichkov, A multiphase shape optimization problem for eigenvalues: qualitative study and numerical results. SIAM J. Numer. Anal. 54 (2016) 210–241. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Bourdin, D. Bucur and E. Oudet, Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31 (2009/10) 4100–4114. [Google Scholar]
  20. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Vol. 65 of Progress in Nonlinear Differential Equations and their Applications. Birkhauser Boston, Inc., Boston, MA (2005). [CrossRef] [Google Scholar]
  21. D. Bucur, G. Buttazzo and A. Henrot, Minimization of A2(H) with a perimeter constraint. Indiana Univ. Math. J. 58 (2009) 2709–2728. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys. 194 (2004) 344–362. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17–49. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Ratl. Mech. Anal. 122 (1993) 183–195. [CrossRef] [Google Scholar]
  25. G. Dal Maso, An introduction to T-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston, Inc., Boston, MA (1993). [Google Scholar]
  26. G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola Norm,. Sup. Pisa Cl. Sci. (4) 24 (1997) 239–290. [Google Scholar]
  27. G. De Philippis, J. Lamboley, M. Pierre and B. Velichkov, Regularity of minimizers of shape optimization problems involving perimeter. J. Math. Pures Appl. (9) 109 (2018) 147–181. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. De Philippis and B. Velichkov, Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69 (2014) 199–231. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.C. Delfour and J.-P. Zolesio, Uniform fat segment and cusp properties for compactness in shape optimization. Appl. Math. Optim. 55 (2007) 385–419. [CrossRef] [MathSciNet] [Google Scholar]
  30. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010). [CrossRef] [Google Scholar]
  31. H. Garcke and C. Hecht, Shape and topology optimization in Stokes flow with a phase field approach. Appl. Math. Optim. 73 (2016) 23–70. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Garcke, C. Hecht, M. Hinze, C. Kahle and K.F. Lam, Shape optimization for surface functionals in Navier-Stokes flow using a phase field approach. Interfaces Free Bound. 18 (2016) 219–261. [CrossRef] [MathSciNet] [Google Scholar]
  33. H. Garcke, P. Hüttl and P. Knopf, Shape and topology optimization including the eigenvalues of an elastic structure: a multi-phase-field approach. Adv. Nonlinear Anal. 11 (2022) 159–197. [Google Scholar]
  34. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin (2001), reprint of the 1998 edition. [Google Scholar]
  35. E. Gonzalez, U. Massari and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32 (1983) 25–37. [CrossRef] [MathSciNet] [Google Scholar]
  36. E.M. Harrell, II, P. Kroger and K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. Hecht, Shape and topology optimization in fluids using a phase field approach and an application in structural optimization, Ph.D. thesis. Universitat Regensburg (2014). [Google Scholar]
  38. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhüuser Verlag, Basel (2006). [Google Scholar]
  39. A. Henrot, Shape Optimization and Spectral Theory, De Gruyter Open Poland (2017). [Google Scholar]
  40. A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts in Mathematics, vol. 28, European Mathematical Society (EMS), Zürich (2018).French publication [MR2512810] with additions and updates. [Google Scholar]
  41. A. Henrot and D. Zucco, Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle. Ann. Sc. Norm. Super. Pisa CI. Sci. (5) 19 (2019) 1535–1559. [Google Scholar]
  42. V. Hernandez, J.E. Roman and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31 (2005) 351–362. [CrossRef] [Google Scholar]
  43. A. Logg, K.-A. Mardal and G. Wells (editors), Automated Solution of Differential Equations by the Finite Element Method - The FEniCS Book. Lecture Notes in Computational Science and Engineering, vol. 84. Springer (2012). [CrossRef] [Google Scholar]
  44. F. Maggi, Sets of finite perimeter and geometric variational problems. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012). [Google Scholar]
  45. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rati. Mech. Anal. 98 (1987) 123–142. [CrossRef] [Google Scholar]
  46. L. Modica and S. Mortola, Un esempio di r--convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. [MathSciNet] [Google Scholar]
  47. F. Murat and S. Simon, Etudes de problemes d’optimal design, in Lecturenotes in Computer Science, vol. 41. Springer Verlag, Berlin (1976), pp. 54–62. [CrossRef] [Google Scholar]
  48. E. Oudet, Quelques résultats en optimisation de forme et stabilization. Prépublication de l’Institut de Recherche Mathématique Avancée [Prepublication of the Institute of Advanced Mathematical Research], vol. 2002/36, Université Louis Pasteur, Departement de Mathematique, Institut de Recherche Mathematique Avancee, Strasbourg (2002), these, l’Université de Strasbourg I (Louis Pasteur), Strasbourg, 2002. [Google Scholar]
  49. E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. [CrossRef] [EDP Sciences] [Google Scholar]
  50. N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 505–532. [CrossRef] [MathSciNet] [Google Scholar]
  51. N.L. Pedersen, Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20 (2000) 2–11. [CrossRef] [Google Scholar]
  52. F. Rindler, Calculus of variations, Universitext. Springer, Cham (2018). [Google Scholar]
  53. S. Schmidt and V. Schulz, Shape derivatives for general objective functions and the incompressible Navier-Stokes equations. Control Cybern. 39 (2010) 677–713. [Google Scholar]
  54. J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687. [Google Scholar]
  55. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis. vol. 16 of Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg (1992). [CrossRef] [Google Scholar]
  56. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rati. Mech. Anal. 101 (1988) 209–260. [CrossRef] [Google Scholar]
  57. A. Wachter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (2006) 25–57. [CrossRef] [MathSciNet] [Google Scholar]
  58. E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed-point theorems. Springer-Verlag, New York (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.