Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/cocv/2022086 | |
Published online | 19 January 2023 |
- A.A. Agrachev, Methods of control theory in nonholonomic geometry, in Proc. ICM-9Jh Birkhauser, Zürich (1995) 1473–1483. [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. Cambridge University Press (2019). [Google Scholar]
- A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences 87. Springer-Verlag (2004). [Google Scholar]
- A.A. Agrachev and A.V. Sarychev, Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems. Dokl. Akad. Nauk SSSR 295 (1987) 777–781. [Google Scholar]
- D.N. Akhiezer and E.B. Vinberg, Weakly symmetric spaces and spherical varieties. Transf. Groups 4 (1999) 3–24. [CrossRef] [Google Scholar]
- D. Alekseevsky, Shortest and straightest geodesics in sub-Riemannian geometry. J. Geometry Phys. 155 (2020) 103713. [CrossRef] [MathSciNet] [Google Scholar]
- W. Ambrose and I.M. Singer, On homogeneous Riemannian manifolds. Duke Math. J. 25 (1958) 647–669. [CrossRef] [MathSciNet] [Google Scholar]
- V.N. Berestovskii, Homogeneous manifolds with intrinsic metric. II. Siberian Math. J. 30 (1989) 180–191. [CrossRef] [MathSciNet] [Google Scholar]
- V.N. Berestovskii, (Locally) shortest arcs of special sub-Riemannian metric on the Lie group SOo(2, 1), St. Petersburg Math. J. 27 (2016) 1–14. [Google Scholar]
- V.N. Berestovskii and Yu.G. Nikonorov, On homogeneous geodesics and weakly symmetric spaces. Ann. Glob. Anal. Geom. 55 (2019) 575–589. [CrossRef] [Google Scholar]
- V.N. Berestovskii and Yu.G. Nikonorov, Riemannian manifolds and homogeneous geodesics. Springer (2020). [Google Scholar]
- V.N. Berestovskii and I.A. Zubareva, Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3). Siberian Math. J. 56 (2015) 601–611. [CrossRef] [MathSciNet] [Google Scholar]
- V.N. Berestovskii and I.A. Zubareva, Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SL(2). Siberian Math. J. 57 (2016) 411–424. [CrossRef] [MathSciNet] [Google Scholar]
- J. Berndt, O. Kowalski and L. Vanhecke, Geodesics in weakly symmetric spaces. Ann. Global Anal. Geom. 15 (1997) 153–156. [CrossRef] [MathSciNet] [Google Scholar]
- I.Yu. Beschastnyi, The optimal rolling of a sphere, with twisting but without slipping. Sb. Math. 205 (2014) 157–191. [CrossRef] [MathSciNet] [Google Scholar]
- I.A. Bizyaev, A.V. Borisov, A.A. Kilin and I.S. Mamaev, Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups. Regular Chaotic Dyn. 21 (2016) 759–774. [CrossRef] [MathSciNet] [Google Scholar]
- U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [Google Scholar]
- R.W. Brockett, Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13–16. [Google Scholar]
- L. Capogna and E. Le Donne, Smoothness of sub-Riemannian isometries. Am. J. Math. 138 (2016) 1439–1454. [CrossRef] [Google Scholar]
- C.S. Gordon, Homogeneous Riemannian manifolds whose geodesies are orbits. Gindikin, S. (eds) Topics in Geometry. Progress in Nonlinear Differential Equations and Their Applications 20, Birkhauser, Boston (1996). [Google Scholar]
- E. Grong, Submersions, Hamiltonian systems, and optimal solutions to the rolling manifolds problem. SIAM J. Control Optim. 54 (2016) 536–566. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jovanovic, Geodesic flows on Riemannian g.o. Spaces. Regul. Chaotic Dyn. 16 (2011) 504–513. [CrossRef] [MathSciNet] [Google Scholar]
- V. Jurdjevic, Optimal Control, Geometry and Mechanics. Mathematical Control Theory., edited by J. Bailleu and J.C. Willems. Springer (1999), pp. 227–267. [Google Scholar]
- A. Kaplan, On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983) 35–42. [CrossRef] [MathSciNet] [Google Scholar]
- V. Kivioja and E. Le Donne, Isometries of nilpotent metric groups. J. l’Ecole Polytech. - Mathemat. 4 (2017) 473–482. [CrossRef] [Google Scholar]
- B. Kostant, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. Am,. Math. Soc. 80 (1955) 520–542. [Google Scholar]
- O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geometr. Dedicata 81 (2000) 209–214. Erratum. Geometr. Dedicata 84 (2001) 331-332. [CrossRef] [Google Scholar]
- O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics. Boll. Unione Mat. Ital. Ser. B. 5 (1991) 189–246. [Google Scholar]
- H.-Q. Li, The Carnot-Caratheodory distance on 2-step groups. arXiv:2112.07822 (2021). [Google Scholar]
- H.-Q. Li and Ye. Zhang, A complete answer to the Gaveau-Brockett problem. arXiv:2112.07927 (2021). [Google Scholar]
- L.V. Lokutsievskii and Yu.L. Sachkov, Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4. Sb. Math. 209 (2018) 74–119. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry and phases in mechanics. Mem. Am. Math. Soc. 88 (1990) 436. [Google Scholar]
- A. Montanari and D. Morbidelli, On the subRiemannian cut locus in a model of free two-step Carnot group. Calc. Var. Partial Differ. Equ. 56 (2017) 36. [CrossRef] [Google Scholar]
- O. Myasnichenko, Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Syst. 8 (2002) 573–597. [CrossRef] [Google Scholar]
- A.V. Podobryaev, Coadjoint orbits of three-step free nilpotent Lie groups and time-optimal control problem. Doklady Math. 102 (2020) 293–295. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Podobryaev, Casimir functions of free nilpotent Lie groups of steps three and four. J. Dyn. Control Syst. 27 (2021) 625–644. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Podobryaev and Yu.L. Sachkov, Cut locus of a left invariant Riemannian metric on SO(3) in the axisymmetric case. J. Geometry Phys. 110 (2016) 436–453. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Podobryaev and Yu.L. Sachkov, Symmetric Riemannian problem on the group of proper isometries of hyperbolic plane. J. Dyn. Control Syst. 24 (2018) 391–423. [CrossRef] [MathSciNet] [Google Scholar]
- L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964). [Google Scholar]
- L. Rizzi and U. Serres, On the cut locus of free, step two Carnot groups. Proc. Arn,. Math. Soc. 145 (2017) 5341–5357. [CrossRef] [Google Scholar]
- Yu.L. Sachkov, Exponential mapping in the generalized Dido problem. Sb. Math. 194 (2003) 1331–1360. [CrossRef] [MathSciNet] [Google Scholar]
- Yu.L. Sachkov, Homogeneous sub-Riemannian geodesics on the group of motions of the plane. Differ. Equ. 57 (2021) 1568–1572. [Google Scholar]
- Yu.L. Sachkov, Left-invariant optimal control problems on Lie groups. arXiv:2105.07899 (2021) (in Russian, to appear in Russian Math. Surveys in English). [Google Scholar]
- Yu. Sachkov, Introduction to Geometric Control, Springer Nature Switzerland (2022) 176 p. [Google Scholar]
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. (N.S.) 20 (1956) 47–87. [MathSciNet] [Google Scholar]
- G.Z. Toth, On Lagrangian and Hamiltonian systems with homogeneous trajectories. J. Phys. A. Math. Theor. 43 (2010) DOI: 10.1088/1751-8113/43/38/385206. [Google Scholar]
- A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems. Dynamical systems. VII. Encycl. Math. Sci. 16 (1994) 1–81 [Google Scholar]
- É.B. Vinberg, Invariant linear connections in a homogeneous space. Tr. Mosk. Mat. Obs. 9 (1960) 191–210. [Google Scholar]
- É.B. Vinberg, Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. Surv. 56 (2001) 1–60. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.