Open Access
Volume 29, 2023
Article Number 5
Number of page(s) 35
Published online 11 January 2023
  1. A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, 34, Cambridge University Press (1995). [Google Scholar]
  2. W. Arendt and K. Urban, Partielle differenzialgleichungen, Springer (2010). [Google Scholar]
  3. M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach. Springer Science & Business Media (2010). [Google Scholar]
  4. G. Bouchitté, I. Fragalà and I. Lucardesi, Shape derivatives for minima of integral functional. Math. Program. 148 (2014) 111–142. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Bouchitté, I. Fragalà and I. Lucardesi, A variational method for second order shape derivatives. SIAM J. Control Optim. 54 (2016) 1056–1084. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Casas, L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Casas and F. Tröltzsch, First-and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Céa, Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction cout. RAIRO Model. Math. Anal. Numer. 20 (1986) 371–402. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. D.G. de Figueiredo, Lectures on the Ekeland variational principle with applications and detours, vol. 81, Springer, Berlin (1989). [Google Scholar]
  10. M.C. Delfour and K. Sturm, Minimax differentiability via the averaged adjoint for control/shape sensitivity. IFAC-PapersOnLine 49 (2016) 142–149. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.C. Delfour and K. Sturm, Parametric semidifferentiability of minimax of Lagrangians: averaged adjoint approach. J. Convex Anal. 24 (2017) 1117–1142. [Google Scholar]
  12. M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Advances in Design and Control, vol. 22, 2nd edn., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). [Google Scholar]
  13. R. Dziri and J.P. Zolésio, An energy principle for a free boundary problem for Navier-Stokes equations, in Partial differential equation methods in control and shape analysis (Pisa). Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York (1997) 133–151. [Google Scholar]
  14. B. Fuhr, V. Schulz and K. Welker, Shape optimization for interface identification with obstacle problems. Vietnam J. Math. 46 (2018) 967–985. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Gangl, U. Langer, A. Laurain, H. Meftahi and K. Sturm, Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37 (2015) B1002–B1025. [CrossRef] [Google Scholar]
  16. P. Gangl and K. Sturm, Topological derivative for PDEs on surfaces. SIAM J. Control Optim. 60 (2022) 81–103. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Grubb, Distributions and operators. Graduate Texts in Mathematics, vol. 252. Springer, New York (2009). [Google Scholar]
  18. C. Heinemann and K. Sturm, Shape optimization for a class of semilinear variational inequalities with applications to damage models. SIAM J. Math. Anal. 48 (2016) 3579–3617. [Google Scholar]
  19. A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts in Mathematics, vol. 28, European Mathematical Society (EMS), Zuörich (2018). [Google Scholar]
  20. M. Hintermüller and A. Laurain, Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49 (2011) 1015–1047. [Google Scholar]
  21. M. Hintermuöller, A. Laurain and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Probl. 31 (2015) 065006, 25. [CrossRef] [Google Scholar]
  22. K. Ito, K. Kunisch and G.H. Peichl, Variational approach to shape derivatives. ESAIM: COCV 14 (2008) 517–539. [CrossRef] [EDP Sciences] [Google Scholar]
  23. T. Kato, Perturbation theory for linear operators, vol. 132. Springer Science & Business Media (2013). [Google Scholar]
  24. A. Laurain, Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains. J. Math. Pures Appl. 134 (2020) 328–368. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal. 50 (2016) 1241–1267. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  26. A. Laurain, I. Yousept and M. Winckler, Shape Optimization for Superconductors Governed by H(Curl)-Elliptic Variational Inequalities. Preprint Number SPP1962-127 (2019). [Google Scholar]
  27. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. 1. Springer Science & Business Media (2012). [Google Scholar]
  28. D. Luft, V.H. Schulz and K. Welker, Efficient techniques for shape optimization with variational inequalities using adjoints. SIAM J. Optim. 30 (2020) 1922–1953. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Nagumo, Uber die Lage der Integralkurven gewöhnlicher Differentialgleichungen. Proc. Phys.-Math. Soc. Jpn. 24 (1942) 551–559. [Google Scholar]
  30. J. Necas, Direct methods in the theory of elliptic equations. Springer Science & Business Media (2011). [Google Scholar]
  31. L. Qi, Transposes, L-Eigenvalues and Invariants of Third Order Tensors (2017). [Google Scholar]
  32. W. Rudin, Real and complex analysis. Tata McGraw-Hill Education (2006). [Google Scholar]
  33. J. Sokolowski and J.-P. Zoléesio, Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16. Springer-Verlag, Berlin (1992). [CrossRef] [Google Scholar]
  34. K. Sturm, Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SICON 53 (2015) 2017–2039. [CrossRef] [Google Scholar]
  35. K. Sturm, Shape optimization with nonsmooth cost functions: from theory to numerics. SIAM J. Control Optim. 54 (2016) 3319–3346. [CrossRef] [MathSciNet] [Google Scholar]
  36. K. Sturm, Topological sensitivities via a Lagrangian approach for semi-linear problems. Preprint arXiv:1803.00304 (2018). [Google Scholar]
  37. G. Wachsmuth, Differentiability of implicit functions: beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259–272. [CrossRef] [MathSciNet] [Google Scholar]
  38. S.W. Walker, The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative. Advances in Design and Control, vol. 28, 1st edn., SIAM (2015). [Google Scholar]
  39. E. Zeidler, Nonlinear functional analysis and its applications. I. Springer-Verlag, New York (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.