Open Access
Volume 29, 2023
Article Number 4
Number of page(s) 28
Published online 11 January 2023
  1. A. Garroni, P. van Meurs, M.A. Peletier and L. Scardia, Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock. Math. Models Methods Appl. Sci. 26 (2016) 2735–2768. [Google Scholar]
  2. M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ratl. Mech. Anal. 209 (2013) 495–539. [CrossRef] [Google Scholar]
  3. S. Hayakawa and K. Tanaka, Convergence analysis of approximation formulas for analytic functions via duality for potential energy minimization. Preprint arXiv:1906.03133 (2019). [Google Scholar]
  4. M. Kimura and P. van Meurs, Regularity of the minimiser of one-dimensional interaction energies. ESAIM: COCV 26 (2020) 27. [CrossRef] [EDP Sciences] [Google Scholar]
  5. M. Kimura and P. van Meurs, Quantitative estimate of the continuum approximations of interacting particle systems in one dimension. SIAM J. Math. Anal. 53 (2021) 681–709. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.G. Mora, L. Rondi and L. Scardia, The equilibrium measure for a nonlocal dislocation energy. Commun. Pure Appl. Math. 72 (2019) 136–158. [Google Scholar]
  7. L. Pronzato and A. Zhigljavsky, Bayesian quadrature, energy minimization, and space-filling design. SIAM/ASA J. Uncertainty Quantif. 8 (2020) 959–1011. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.B. Saff and V. Totik, Logarithmic Potentials with External Fields. Springer Verlag Berlin Heidelberg (1997). [Google Scholar]
  9. E. Sandier and S. Serfaty, 1D log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Related Fields 162 (2015) 795–846. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Scardia, R.H.J. Peerlings, M.A. Peletier and M.G.D. Geers, Mechanics of dislocation pile-ups: a unification of scaling regimes. J. Mech. Phys. Solids 70 (2014) 42–61. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Tanaka and M. Sugihara, Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization. IMA J. Numer. Anal. 39 (2019) 1957–1984. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. van Meurs, Boundary-layer analysis of repelling particles pushed to an impenetrable barrier. Preprint arXiv:2105.07163 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.