Open Access
Volume 29, 2023
Article Number 6
Number of page(s) 71
Published online 11 January 2023
  1. B. Anahtarci, C.D. Kariksiz and N. Saldi, Value iteration algorithm for mean-field games. Syst. Control Lett. 143 (2020) 1–10. [Google Scholar]
  2. M. Bardi, Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7 (2012) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bensoussan, K.C.J. Sung, S.C.P. Yam and S.P. Yung, Linear-quadratic mean field games. J. Optim. Theory Appl. 169 (2016) 496–529. [CrossRef] [MathSciNet] [Google Scholar]
  4. T.R. Bielecki and S.R. Pliska, Risk-sensitive ICAPM with application to fixed-income management. IEEE Trans. Autom. Control 49 (2004) 420–432. [CrossRef] [Google Scholar]
  5. J.R. Birge, L. Bo and A. Capponi, Risk-sensitive asset management and cascading defaults. Math. Oper. Res. 43 (2018) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.E. Caines and A.C. Kizilkale, ε-Nash equilibria for partially observed LQG mean field games with a major player. IEEE Trans. Autom. Control 62 (2017) 3225–3234. [CrossRef] [Google Scholar]
  7. Y. Chen, A. Buŝić and S.P. Meyn, State estimation and mean field control with application to demand dispatch, in Proceedings of IEEE 54th Conference on Decision and Control. Osaka (2015) 6548–6555. [Google Scholar]
  8. Y. Chen, A. Buŝsićc and S.P. Meyn, State estimation for the individual and the population in mean field control with application to demand dispatch. IEEE Trans. Autom. Control 62 (2017) 1138–1149. [Google Scholar]
  9. M.K. Das, A. Goswami and N. Rana, Risk sensitive portfolio optimization in a jump diffusion model with regimes. SIAM J. Control Optim. 56 (2018) 1550–1576. [CrossRef] [MathSciNet] [Google Scholar]
  10. W.H. Fleming and S.J. Sheu, Risk-sensitive control and an optimal investment model. Math. Financ. 10 (2000) 197–213. [CrossRef] [Google Scholar]
  11. W.H. Fleming and S.J. Sheu, Risk-sensitive control and an optimal investment model II. Ann. Appl. Probab. 12 (2002) 730–767. [CrossRef] [MathSciNet] [Google Scholar]
  12. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer, New York (2006). [Google Scholar]
  13. H. Hata, Risk sensitive asset management with lognormal interest rates. Asia-Pac. Financ. Marka. 28 (2021) 169–206. [CrossRef] [Google Scholar]
  14. Y. Hu, J. Huang and X. Li, Linear quadratic mean field game with control input constraint. ESAIM: COCV 24 (2018) 901–919. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Y. Hu, J. Huang and T. Nie, Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 56 (2018) 2835–2877. [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Hu and X.Y. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim. 44 (2005) 444–466. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Huang, B.C. Wang and T. Xie, Social optimal in leader-follower mean field linear quadratic control. ESAIM: COCV 27 (2021) 1–31. [CrossRef] [EDP Sciences] [Google Scholar]
  18. M. Huang, Large-population LQG games involving a major player: The Nash certainty equivalence principle. SIAM J. Control Optim. 48 (2010) 3318–3353. [CrossRef] [Google Scholar]
  19. M. Huang, P.E. Caines and R.P. Malhamće, An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complex 20 (2007) 162–172. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Huang, R.P. Malhamće and P.E. Cains, On a class of large-scale cost-coupled Markov games with applications to decentralized power control, in Proceedings of IEEE 43th Conference on Decision and Control. Nassau (2004) 2830–2835. [Google Scholar]
  21. M. Huang, R.P. Malhamće and P.E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commu. Inf. Syst. 6 (2006) 221–252. [CrossRef] [Google Scholar]
  22. M. Huang, R.P. Malhamće and P.E. Caines, Nash cerntainty equivalence in large population stochastic dynamic games: connections with the physics of interacting particle systems, in Proceedings of IEEE 45th Conference on Decision and Control. San Diego (2006) 4921–4926. [CrossRef] [Google Scholar]
  23. M. Huang and M. Zhou, Linear quadratic mean field games: Asymptotic solvability and relation to the fixed point approach. IEEE Trans. Autom. Control 65 (2020) 1397–1412. [CrossRef] [Google Scholar]
  24. A.C. Kizilkale, R. Salhab and R.P. Malhamće, An integral control formulation of mean field game based large scale coordination of loads in smart grids. Automatica 100 (2019) 312–322. [CrossRef] [Google Scholar]
  25. M. Larranage, J. Denis, M. Assaad and K.D. Turck, Energy-efficient distributed transmission scheme for MTC in dense wireless networks: a mean field approach. IEEE Internet Things J. 7 (2020) 477–490. [CrossRef] [Google Scholar]
  26. J.M. Lasry and P.L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C.R. Math. 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.M. Lasry and P.L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C.R. Math. 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.M. Lasry and P.L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  29. W. Lee, S. Liu, H. Tembine, W. Li and S. Osher, Controlling propagation of epidemics via mean-field control. SIAM J. Appl. Math. 81 (2021) 190–207. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Li and J.F. Zhang, Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Autom. Control 53 (2008) 1643–1660. [CrossRef] [Google Scholar]
  31. Y. Ma and M. Huang, Linear quadratic mean field games with a major player: the multi-scale approach. Automatica 113 (2020) 1–11. [Google Scholar]
  32. Z. Ma, D.S. Callaway and I.A. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21 (2013) 67–78. [CrossRef] [Google Scholar]
  33. X. Mao, The stochastic differential equations and applications. Woodhead Publishing, Philadelphia (2007). [Google Scholar]
  34. J. Moon and T. Başar, Linear quadratic risk-sensitive and robust mean field games. IEEE Trans. Autom. Control 62 (2017) 1062–1077. [Google Scholar]
  35. J. Moon and T. Basar, Risk-sensitive mean field games via the stochastic maximum principle. Dyn. Games Appl. 9 (2019) 1100–1125. [CrossRef] [MathSciNet] [Google Scholar]
  36. S.L. Nguyen and M. Huang, Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50 (2012) 2907–2937. [Google Scholar]
  37. M. Nourian, P.E. Caines, R.P. Malhamé and M. Huang, Mean field LQG control in leader-follower stochastic multi-agent systems: Likelihood ratio based adaptation. IEEE Trans. Autom. Control 57 (2012) 2801–2816. [CrossRef] [Google Scholar]
  38. M. Nourian and P.E. Caines, ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51 (2013) 3302–3331. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Nourian, R.P. Malhamée, M. Huang and P.E. Caines, Mean field (NCE) formulation of estimation based leader-follower collective dynamics. Int. J. Robot. Autom. 26 (2011) 120–129. [Google Scholar]
  40. L. Ntogramatzidis and A. Ferrante, On the solution of the Riccati differential equation arising from the LQ optimal control problem. Syst. Control Lett. 59 (2010) 114–121. [CrossRef] [Google Scholar]
  41. N. Saldi, T. Basar and M. Raginsky, Approximate Markov-Nash equilibria for discrete-time risk-sensitive mean-field games. Math. Oper. Res. 45 (2020) 1596–1620. [CrossRef] [MathSciNet] [Google Scholar]
  42. H. Tembine, COVID-19: data-driven mean-field-type game perspective. Games 11 (2020) 1–107. [Google Scholar]
  43. H. Tembine, Q. Zhu and T. Bassar, Risk-sensitive mean-field games. IEEE Trans. Autom. Control 59 (2014) 835–850. [CrossRef] [Google Scholar]
  44. G.Y. Weintraub, C.L. Benkard and B.V. Roy, Oblivious equilibrium: a mean field approximation for large-scale dynamic games, in Proceedings of 18th International Conference on Neural Information Processing Systems. Vancouver (2005) 1489–1496. [Google Scholar]
  45. G.Y. Weintraub, C.L. Benkard and B.V. Roy, Markov perfect industry dynamics with many firms. Econometrica 76 (2008) 1375–1411. [Google Scholar]
  46. J. Yong and X.Y. Zhou, Stochastic controls Hamiltonnian systems and HJB equations. Springer, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.