Open Access
Volume 29, 2023
Article Number 57
Number of page(s) 23
Published online 25 July 2023
  1. F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51 (2005) 61–105. [Google Scholar]
  2. F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248 (2010) 1473–1517. [Google Scholar]
  3. F. Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations. Lecture Notes in Mathematics/C.I.M.E. Foundation Subseries Control of Partial Differential Equations, vol. 2048, Springer (2012), chap. 1, 15–114. [Google Scholar]
  4. F. Alabau-Boussouira, Y. Privat and E. Trélat, Nonlinear damped partial differential equations and their uniform discretizations. J. Funct. Anal. 273 (2017) 352–403. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Ammari, Dirichlet boundary stabilization of the wave equation. Asymp. Anal. 30 (2002) 117–130. [Google Scholar]
  6. K. Ammari and S. Nicaise, Stabilization of elastic systems by collocated feedback. Vol. 2124 of Lecture Notes in Mathematic. Springer (2014). [Google Scholar]
  7. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  8. R. Bey, J.-P. Lohéac and M. Moussaoui, Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation. J. Mathématiques Pures Appl. 78 (1999) 1043–1067. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y. Chitour, S. Marx and G. Mazanti, One-dimensional wave equation with set-valued boundary damping: well-posedness, asymptotic stability, and decay rates. ESAIM: COCV 27 (2021) 84. [CrossRef] [EDP Sciences] [Google Scholar]
  10. I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27 (2002) 1901–1951. [CrossRef] [Google Scholar]
  11. M.G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3 (1969) 376–418. [CrossRef] [Google Scholar]
  12. C.M. Dafermos, Asymptotic behavior of solutions of evolution equations, in Nonlinear evolution equations. Elsevier (1978), pp. 103–123. [Google Scholar]
  13. C.M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97–106. [CrossRef] [Google Scholar]
  14. M. Daoulatli, I. Lasiecka and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discr. Continu. Dyn. Syst. 2 (2009) 67–94. [Google Scholar]
  15. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  16. P. Grisvard, Contrôlabilité exacte avec conditions mêlées. Comp. Rendus l'Acad. Sci. Paris 305 (1987) 363–366. [Google Scholar]
  17. A. Haraux, Systèmes dynamiques dissipatifs et applications, vol. 17. Masson (1991). [Google Scholar]
  18. V. Komornik, Vol. 36 of Exact controllability and stabilization: the multiplier method. Wiley (1994). [Google Scholar]
  19. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. [Google Scholar]
  20. I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149–192. [MathSciNet] [Google Scholar]
  21. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6 (1993) 507–533. [Google Scholar]
  22. I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with L2(0, +∞; L2(Γ))- feedback control in the Dirichlet boundary conditions. J. Differ. Equ. 66 (1987) 340–390. [CrossRef] [Google Scholar]
  23. I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992) 189–224. [Google Scholar]
  24. G. Lebeau, Contrôle et stabilisation hyperboliques. Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990) 1–14. [Google Scholar]
  25. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes (II), in Annales de l’Institut Fourier, vol. 11 (1961) 137–178. [CrossRef] [Google Scholar]
  26. C. Prieur, S. Tarbouriech and J. M. Gomes da Silva Jr, Wave equation with cone-bounded control laws. IEEE Trans. Automatic Control 61 (2016) 3452–3463. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. Rao, Decay estimates of solutions for a hybrid system of flexible structures. Eur. J. Appl. Math. 4 (1993) 303–319. [CrossRef] [Google Scholar]
  28. L. Robbiano, Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Commun. Partial Differ. Equ. 16 (1991) 789–800. [CrossRef] [Google Scholar]
  29. R.E. Showalter, Vol. 49 of Monotone operators in Banach space and nonlinear partial differential equations. American Mathematical Society (2013). [CrossRef] [Google Scholar]
  30. R. Temam, Vol. 68 of Infinite-dimensional dynamical systems in mechanics and physics. Springer (1997). [CrossRef] [Google Scholar]
  31. J. Vancostenoble and P. Martinez, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J. Control Optim. 39 (2000) 776–797. [Google Scholar]
  32. C.-Z. Xu and G.Q. Xu, Saturated boundary feedback stabilization of a linear wave equation. SIAM J. Control Optim. 57 (2019) 290–309. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28 (1990) 466–477. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.