Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 56
Number of page(s) 39
DOI https://doi.org/10.1051/cocv/2023049
Published online 25 July 2023
  1. B. Acciaio, J. Backhoff-Veraguas and R. Carmona, Extended mean field control problems: stochastic maximum principle and transport perspective. SIAM J. Control. Optim. 57 (2019) 3666–3693. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Achdou, J. Han, J. Lasry, P. Lions and B. Moll, Income and wealth distributions in macroeconomics: a continuous-time approach. 2020, preprint, available at https://benjaminmoll.com/wp-content/uploads/2019/07/HACT.pdf. [Google Scholar]
  3. R. Aïd, R. Dumitrescu and P. Tankov, The entry and exit game in the electricity markets: a man-field game approach. J. Dyn. Games 8 (2021) 331–359. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.R. Aiyagari, Uninsured idiosyncratic risk and aggregate savings. Q. J. Econ. 109 (1994) 659–684. [CrossRef] [Google Scholar]
  5. C. Alasseur, I. Ben Taher and A. Matoussi, An extended mean field games for storage in smart grids. J. Optim. Theory Appl. 184 (2020) 644–670. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Ashrafyan, T. Bakaryan, D.A. Gomes and J. Gutierrez, A variational approach for price formation models in one dimension, (2022) Preprint arXiv:2204.01398. [Google Scholar]
  7. Y. Ashrafyan, T. Bakaryan, D.A. Gomes and J. Gutierrez, The potential method for price-formation models, (2022) Preprint arXiv:2204.01435. [Google Scholar]
  8. E. Bayraktar, I. Mitra and J. Zhang, Countercyclical unemployment benefits: general equilibrium analysis on transition dynamics, 2021, available at SSRN: https://ssrn.com/abstract=3925579. [Google Scholar]
  9. A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics, New York (2013). [Google Scholar]
  10. P. Cardaliaguet, Notes on Mean Field Games, available at https://www.ceremade.dauphine.fr/~cardaliaguet. [Google Scholar]
  11. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control. Optim. 51 (2013) 2705–2734. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. [Google Scholar]
  13. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I. Springer International Publishing, Switzerland (2018). [Google Scholar]
  14. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications II, Springer International Publishing, Switzerland (2018). [Google Scholar]
  15. P. Casgrain and S. Jaimungal, Mean-field games with differing beliefs for algorithmic trading. Math. Finance 30 (2020) 995–1034. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Djehiche, J. Barreiro-Gomez and H. Tembine, Price dynamics for electricity in smart grid via meanf-field type games. Dyn. Games Appl. 10 (2020) 797–818. [Google Scholar]
  17. M.F. Djete, D. Possamai and X. Tan, McKean-Vlasov optimal control: the dynamic programming principle, (2020) Preprint arXiv:1907.08860. [Google Scholar]
  18. M.F. Djete, D. Possamaï and X. Tan, McKean-Vlasov optimal control: limit theory and equivalence between different formulations. Math. Oper. Res. (2022) 1–40. [Google Scholar]
  19. M.F. Djete, Extended mean field control problem: a propagation of chaos result. Electron. J. Probab. 27 (2022) 1–53. [CrossRef] [Google Scholar]
  20. D. Evangelista and Y. Thamsten, On finite population games of optimal trading, (2020) Preprint arXiv:2004.00790. [Google Scholar]
  21. D. Evangelista, Y. Saporito and Y. Thamsten, Price formation in financial markets: a game-theoretic perspective, (2022) Preprint arXiv:2202.11416. [Google Scholar]
  22. O. Féron, P. Tankov and L. Tinsi, Price formation and optimal trading in intraday electricity markets. Math. Financial Econ. 16 (2022) 205–237. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Féron, P. Tankov and L. Tinsi, Price formation and optimal trading in intraday electricity markets with a Major Player. Risks 8 (2020) 133. [CrossRef] [Google Scholar]
  24. D. Firoozi, A. Shrivats and S. Jaimungal, Principal agent mean field games in renewable energy certificate markets, (2022) Preprint arXiv:2112.11963. [Google Scholar]
  25. G. Fu, P. Graewe, U. Horst and A. Popier, A mean field game of optimal portfolio liquidation. Math. Oper. Res. 46 (2021) 1250–1281. [CrossRef] [MathSciNet] [Google Scholar]
  26. G. Fu and U. Horst, Mean-field leader-follower games with terminal state constraint. SIAM. J. Control. Optim. 58 (2018) 2078–2113. [Google Scholar]
  27. M. Fujii and A. Takahashi, A mean field game approach to equilibrium pricing with market clearing condition. SIAM J. Control. Optim. 60 (2022) 259–279. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Fujii and A. Takahashi, Strong convergence to the mean-field limit of a finite agent equilibrium. SIAM J. Financial Math. 13 (2022) 459–490. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Fujii and A. Takahashi, Equilibrium price formation with a major player and its mean field limit. ESAIM: Control Optim. Calc. Variations 28 (2022) 21. [CrossRef] [EDP Sciences] [Google Scholar]
  30. X. Gabaix, J.M. Lasry, P.L. Lions and B. Moll, The dynamics of inequality. Econometrica 84 (2016) 2071–2111. [CrossRef] [MathSciNet] [Google Scholar]
  31. D.A. Gomes, J. Gutierrez and R. Ribeiro, A random-supply mean field game price model, (2022) Preprint arXiv:2109.01478. [Google Scholar]
  32. D.A. Gomes, L. Nurbekyan and E.A. Pimentel, Economic Models and Mean-field Games Theory. Publicaoes Matematicas, IMPA, Rio, Brazil (2015). [Google Scholar]
  33. D.A. Gomes, E.A. Pimentel and V. Voskanyan, Regularity Theory for Mean-field Game Systems. SpringerBriefs in Mathematics (2016). [CrossRef] [Google Scholar]
  34. D.A. Gomes and J. Saúde, A mean-field game approach to price formation. Dyn. Games Appl. (2020) https://doi.org/10.1007/s13235-020-00348-x. [Google Scholar]
  35. P.J. Graber, Linear quadratic mean field type control and mean field games with common noise, with application to production of an exhaustible resource. Appl. Math. Optim. 74 (2016) 459–486. [CrossRef] [MathSciNet] [Google Scholar]
  36. P.J. Graber and C. Mouzouni, On mean field games models for exhaustible commodities trade. ESAIM: COCV 26 (2020) 11. [Google Scholar]
  37. M. Huang, R. Malhame and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. [CrossRef] [MathSciNet] [Google Scholar]
  38. M. Huang, R. Malhame and P.E. Caines, An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complexity 20 (2007) 162–172. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Huang, R. Malhame and P.E. Caines, Large-population cost-coupled LQG problems with nonuniform agents: individualmass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automatic Control 52 (2007) 1560–1571. [CrossRef] [MathSciNet] [Google Scholar]
  40. D. Lacker, Mean field games via controlled martingales problems: existence of Markovian equilibria. Stochastic Processes Appl. 125 (2015) 2856–2894. [CrossRef] [MathSciNet] [Google Scholar]
  41. D. Lacker, A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165 (2016) 581–648. [Google Scholar]
  42. J.M. Lasry and P.L. Lions, Jeux a champ moyen I. Le cas stationnaire. C. R. Sci. Math. Acad. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  43. J.M. Lasry and P.L. Lions, Jeux a champ moyen II. Horizon fini et controle optimal. C. R. Sci. Math. Acad. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.M. Lasry and P.L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
  45. M. Motte and H. Pham, Mean-field Markov decision processes with common noise and open-loop controls. Ann. Appl. Probab. (2021) Preprint arXiv:1912.07883. [Google Scholar]
  46. T. Nie and K. Yan, Extended mean-field control problem with partial observation. ESAIM: COCV 28 (2022) 17. [CrossRef] [EDP Sciences] [Google Scholar]
  47. B. Okelo, On convex optimization in Hilbert spaces. Maltepe J. Math. 1 (2019) 89–95. [Google Scholar]
  48. E. Pardoux and A. Rascanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Springer (1999). [Google Scholar]
  49. S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825–843. [CrossRef] [MathSciNet] [Google Scholar]
  50. J. Peypouquet, Convex Optimization in Normed Spaces. Springer (2015). [CrossRef] [Google Scholar]
  51. H. Pham and X. Wei, Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM J. Control Optim. 55 (2017) 1069–1101. [Google Scholar]
  52. A. Schied and T. Zhang, A market impact game under transient price impact. Math. Oper. Res. 44 (2017) 102–121. [Google Scholar]
  53. A. Shrivats, D. Firoozi and S. Jaimungal, A mean-field game approach to equilibrium pricing, optimal generation, and trading in solar renewable energy certificate markets. Math. Finance 32 (2020) 779–824. [Google Scholar]
  54. J. Yong, Optimality variational principle for controlled forward–backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control. Optim. 48 (2010) 4119–4156. [CrossRef] [MathSciNet] [Google Scholar]
  55. J. Yong, Forward-backward stochastic differential equations with mixed initial-terminal conditions. Trans. Am. Math. Soc. 362 (2010) 1047–1096. [Google Scholar]
  56. J. Zhang, Backward Stochastic Differential Equations. Springer, NY (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.