Open Access
Volume 29, 2023
Article Number 38
Number of page(s) 31
Published online 09 June 2023
  1. A. Amirov and M. Yamamoto, A timelike Cauchy problem and an inverse problem for general hyperbolic equations. Appl. Math. Lett. 21 (2008) 885–891. [CrossRef] [MathSciNet] [Google Scholar]
  2. V.N. Aref’ev, Smoothness of solutions of second-order hyperbolic equations with discontinuous coefficients. Math. Notes Acad. Sci. USSR 49 (1991) 557–563. [Google Scholar]
  3. L. Baudouin, M. de Buhan and S. Ervedoza, Global Carleman estimates for waves and applications. Commun. Part. Diff. Equ. 38 (2013) 823–859. [CrossRef] [Google Scholar]
  4. L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem. Inverse Probl. 23 (2007) 257. [CrossRef] [Google Scholar]
  5. M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients. Applicable Anal. 83 (2004) 983–1014. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl. 85 (2006) 193–224. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Bellassoued and M. Yamamoto, Carleman estimate and inverse source problem for Biot’s equations describing wave propagation in porous media. Inverse Probl. 29 (2013) 115002. [CrossRef] [Google Scholar]
  8. M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems. Springer, Japan KK (Springer Monograghs in Mathematics), 2017. [CrossRef] [Google Scholar]
  9. M. Bellassoued, O. Yu. Imanuvilov and M. Yamamoto, Inverse problem of determining the density and two Lamé coefficients by boundary data. SIAM J. Math. Anal. 40 (2008) 238–265. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in an inverse problem for a hyperbolic equation with a finite set of boundary data. Appl. Anal. 87 (2008) 1105–1119. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Benabdallah, P. Gaitan and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl. 336 (2007) 865–887. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Benabdallah, P. Gaitan and J. Le Rousseau, Carleman estimates for stratified media. J. Funct. Anal. 260 (2011) 3645–3677. [CrossRef] [MathSciNet] [Google Scholar]
  13. A.L. Bukhgeim, Introduction to the Theory of Inverse Problems (inverse and Ill-Posed Problem Series), Vol.19. Walter de Gruyter (2000). [Google Scholar]
  14. A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of mutidimensional inverse problems. Sov. Math. Dokl. 24 (1981) 244–247. [Google Scholar]
  15. I.M. Gelfand and G.E. Shilov. Some Questions of Theory of Differential Equations. Nauka, Moscow (1958) (in Russian). [Google Scholar]
  16. L. Hörmander. Linear Partial Differential Operators. Springer, Berlin (1963). [CrossRef] [Google Scholar]
  17. O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptot. Anal. 32 (2002) 185–220. [MathSciNet] [Google Scholar]
  18. O. Yu. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement. Inverse Probl. 19 (2003) 157. [CrossRef] [Google Scholar]
  19. V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed. Springer (2006). [Google Scholar]
  20. M.V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation. Appl. Anal. 85 (2006) 515–538. [CrossRef] [MathSciNet] [Google Scholar]
  21. M.V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21 (2013) 477–560. [CrossRef] [MathSciNet] [Google Scholar]
  22. I. Lasiecka, R. Triggiani and P. Yao, Inverse/observability estimates for second order hyperbolic equations with variables coefficients. J. Math. Anal. Appl. 235 (1999) 13–57. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-L. Lions and E. Magenes, Non-homogenenous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972). [Google Scholar]
  24. Rakesh, An Inverse impedance transmission problem for the wave equation. Commun. Part. Diff. Equ. 18 (1993) 583–600. [CrossRef] [Google Scholar]
  25. B. Riahi, Stability estimate in determination of a coefficient in transmission wave equation by boundary observation. Appl. Anal. 94 (2015) 2478–2516. [CrossRef] [MathSciNet] [Google Scholar]
  26. L. Robbiano, Uniqueness theorem adapted to control solutions of hyperbolic problems. Commun. Part. Diff. Equ. 16 (1991) 789–800. [CrossRef] [Google Scholar]
  27. L. Robbiano, Cost function and control solutions of hyperbolic equations. Asymp. Anal. 10 (1995) 95–115. [Google Scholar]
  28. J. Le Rousseau and N. Lerner, Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE 6 (2013) 1601–1648. [CrossRef] [MathSciNet] [Google Scholar]
  29. D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367–408. [Google Scholar]
  30. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 65–98. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.