Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 33
Number of page(s) 31
DOI https://doi.org/10.1051/cocv/2023019
Published online 11 May 2023
  1. R. Agrawal and T. Horel, Optimal bounds between f-divergences and integral probability metrics. J. Mach. Learn. Res. 22 (2021) 5662–5720. [Google Scholar]
  2. Y. An and R. Gao, Generalization bounds for (Wasserstein) robust Optimization. Adv. Neural Inform. Process. Syst. 34 (2021). [Google Scholar]
  3. J. Blanchet and Y. Kang, Semi-supervised learning based on distributionally robust optimization. Data Anal. Applic. 3: Comput. Classif. Finan. Stat. Stochast. Methods 5 (2020) 1–33. [Google Scholar]
  4. J. Blanchet, Y. Kang and K. Murthy, Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab. 56 (2019) 830–857. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Blanchet and K. Murthy, Quantifying distributional model risk via optimal Transport. Math. Oper. Res. 44 (2019) 565–600. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Blanchet, K. Murthy and F. Zhang, Optimal transport-based distributionally robust optimization: structural properties and iterative schemes. Math. Oper. Res. (2021). [Google Scholar]
  7. V.I. Bogachev, Measure Theory, Vol. 1, 1st edn. Springer (2007). [CrossRef] [Google Scholar]
  8. R.I. Bot, S.-M. Grad and G. Wanka, Duality in Vector Optimization, Vector Optimization Springer Berlin Heidelberg (2009). [CrossRef] [Google Scholar]
  9. S. Boucheron, O. Bousquet, G. Lugosi and P. Massart, Moment inequalities for functions of independent random variables. Ann. Probab. 33 (2005) 514–560. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer New York (2010). [Google Scholar]
  11. G. Carlier, V. Duval, G. Peyré and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. 49 (2017) 1385–1418. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Chen and I.C. Paschalidis, Distributionally robust learning. Found. Trends Optim. 4 (2020) 1–243. [CrossRef] [Google Scholar]
  13. C. Clason and T. Valkonen, Introduction to Nonsmooth Analysis and Optimization, arXiv:2001.00216 (2020). [Google Scholar]
  14. M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport, Adv. Neural Inform. Process. Syst. Vol. 26 Curran Associates, Inc. (2013). [Google Scholar]
  15. P.M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Programm. 171 (2018) 115–166. [CrossRef] [Google Scholar]
  16. R. Gao and A. Kleywegt, Distributionally robust stochastic optimization with Wasserstein distance. Math. Oper. Res. (2022). [Google Scholar]
  17. A. Genevay, L. Chizat, F. Bach, M. Cuturi and G. Peyré, Sample complexity of Sinkhorn divergences, in 22nd International Conference on Artificial Intelligence and Statistics, PMLR (2019) 1574–1583. [Google Scholar]
  18. A. Genevay, M. Cuturi, G. Peyré and F. Bach, Stochastic optimization for large-scale optimal transport, in Adv. Neural Inform. Process Syst. (2016). [Google Scholar]
  19. O. Kallenberg, Random Measures, Theory and Applications, Probability Theory and Stochastic Modelling. Springer International Publishing (2017). [CrossRef] [Google Scholar]
  20. N.J. Kalton, N.T. Peck and J.W. Roberts, An F-space Sampler, London Mathematical Society Lecture Note Series. Cambridge University Press (1984). [CrossRef] [Google Scholar]
  21. A. Klenke, Probability Theory: A Comprehensive Course, Universitext. Springer (2014). [Google Scholar]
  22. D. Kuhn, P.M. Esfahani, V.A. Nguyen and S. Shafieezadeh-Abadeh, Wasserstein distributionally robust optimization: theory and applications in machine learning, in Operations Research & Management Science in the Age of Analytics. INFORMS (2019). [Google Scholar]
  23. S.Y. Lee, Gibbs sampler and coordinate ascent variational inference: a set-theoretical review. Commun. Stat. Theory Methods (2021) 1–21. [Google Scholar]
  24. A. Lunardi, Interpolation Theory, Vol. 9. Springer (2009). [Google Scholar]
  25. Q. Merigot and B. Thibert, Optimal transport: discretization and algorithms, in Handbook of Numerical Analysis, Vol. 22. Elsevier (2021) 133–212. [Google Scholar]
  26. J. Musielak, Orlicz Spaces and Modular Spaces, Vol. 1034. Springer (2006). [Google Scholar]
  27. F.-P. Paty and M. Cuturi, Regularized optimal transport is ground cost adversarial, in International Conference on Machine Learning, PMLR (2020) 7532–7542. [Google Scholar]
  28. T. Pennanen and A.-P. Perkkiö, Topological duals of locally convex function Spaces. Positivity 26 (2022) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples, Springer Briefs in Optimization. Springer International Publishing (2015). [CrossRef] [Google Scholar]
  30. G. Peyré, M. Cuturi, Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
  31. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Grundlehren Der Mathematischen Wissenschaften. Springer-Verlag (1998). [CrossRef] [Google Scholar]
  32. W. Rudin, Real and Complex Analysis. McGraw-Hill (1987). [Google Scholar]
  33. W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill (1991). [Google Scholar]
  34. F. Santambrogio, Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and Their Applications, Vol. 87. Springer International Publishing (2015). [CrossRef] [Google Scholar]
  35. S. Shafieezadeh-Abadeh, D. Kuhn and P.M. Esfahani, regularization via mass transportation. J. Mach. Learn. Res. 20 (2019) 1–68. [Google Scholar]
  36. A. Sinha, H. Namkoong and J. Duchi, Certifying some distributional robustness with principled adversarial training, in International Conference on Learning Representations (2018). [Google Scholar]
  37. C. Villani, Topics in Optimal Transportation. American Mathematical Society (2003). [Google Scholar]
  38. C. Villani, Optimal Transport: Old and New. Springer (2008). [Google Scholar]
  39. J. Wang, R. Gao and Y. Xie, Sinkhorn Distributionally Robust Optimization, arXiv:2109.11926 (2021). [Google Scholar]
  40. Y. Yu, T. Lin, E.V. Mazumdar and M. Jordan, Fast distributionally robust learning with variance-reduced min-max optimization, in International Conference on Artificial Intelligence and Statistics, PMLR (2022) 1219–1250. [Google Scholar]
  41. C. Zalinescu, Convex Analysis in General Vector Spaces. World Scientific (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.