Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 34
Number of page(s) 49
DOI https://doi.org/10.1051/cocv/2023032
Published online 11 May 2023
  1. N. Agram, S. Haadem, B. Øksendal and F. Proske, A maximum principle for infinite horizon delay equations. SIAM J. Math. Anal. 45 (2013) 2499–2522. [CrossRef] [MathSciNet] [Google Scholar]
  2. N. Agram and B. Øksendal, Infinite horizon optimal control of forward-backward stochastic differential equations with delay. J. Comput. Appl. Math. 259 (2014) 336–349. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.M. Aseev and A.V. Kryazhimskii, The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math. 257 (2007) 1–255. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.M. Aseev and V.M. Veliov, Another view of the maximum principle for infinite-horizon optimal control problems in economics. Russ. Math. Surv. 74 (2019) 963–1011. [CrossRef] [Google Scholar]
  5. P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003) 109–129. [CrossRef] [MathSciNet] [Google Scholar]
  6. Z.J. Chen, Existence and uniqueness for BSDE with stopping time. Chin. Sci. Bull. 43 (1998) 96–99. [CrossRef] [Google Scholar]
  7. F. Confortola, Lp solution of backward stochastic differential equations driven by a marked point process. Math. Control Signal Syst. 31 (2019) 1. [CrossRef] [Google Scholar]
  8. R.W.R. Darling and E. Pardoux, Backward SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997) 1135–1159. [MathSciNet] [Google Scholar]
  9. D. Duffie and L.G. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [Google Scholar]
  10. S. Haadem, B. Øksendal and F. Proske, Maximum principles for jump diffusion processes with infinite horizon. Automatica J. IFAC 49 (2013) 2267–2275. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Halkin, Necessary conditions for optimal control problems with infinite horizons. Econometrica 42 (1974) 267–272. [Google Scholar]
  12. T. Hao and Q.X. Meng, A global maximum principle for optimal control of general mean-field forward-backward stochastic systems with jumps. ESAIM: Control, Optim. Calcu. Varia. 26 (2020) 87. [CrossRef] [EDP Sciences] [Google Scholar]
  13. M.S. Hu, Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk 2 (2017) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.S. Hu, S.L. Ji and X.L. Xue, A global stochastic maximum principle for full coupled forward–backward stochastic systems. SIAM J. Control Optim. 56 (2018) 4309–4335. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.P. Huang, J.M. Yong and H.C. Zhou, Infinite horizon linear quadratic overtaking optimal control problems. SIAM J. Control Optim. 59 (2021) 1312–1340. [CrossRef] [MathSciNet] [Google Scholar]
  16. N. El Karoui, S.G. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [Google Scholar]
  17. X.J. Li and S.J. Tang, General necessary conditions for partially observed optimal stochastic controls. J. Appl. Probab. 32 (1995) 1118–1137. [CrossRef] [MathSciNet] [Google Scholar]
  18. H.P. Ma and B. Liu, Infinite horizon optimal control problem of mean-field backward stochastic delay differential equation under partial information. Eur. J. Control 36 (2017) 43–50. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Maslowski and P. Veverka, Sufficient stochastic maximum principle for discounted control problem. Appl. Math. Optim. 70 (2014) 225–252. [CrossRef] [MathSciNet] [Google Scholar]
  20. H.W. Mei, Q.M. Wei and J.M. Yong, Optimal ergodic control of linear stochastic differential equations with quadratic cost functionals having indefinite weights. SIAM J. Control Optim. 59 (2021) 584–613. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Muthukumar and R. Deepa, Infinite horizon optimal control of forward–backward stochastic system driven by Teugels martingales with Lévy processes. Stoch. Dyn. 17 (2017) 1750020. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Nagai, Risk-sensitive dynamic asset management with partial information. Stochastics in Finite and Infinite Dimension. Trends. Math. Birkhäuser, Boston (2000) 321–339. [Google Scholar]
  23. H. Nagai and S.G. Peng, Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12 (2002) 173–195. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Orrieri, G. Tessitore and P. Veverka, Ergodic maximum principle for stochastic systems. Appl. Math. Optim. 79 (2019) 567–591. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. Orrieri and P. Veverka, Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM: Control, Optim. Calcu. Varia. 23 (2017) 337–371. [CrossRef] [EDP Sciences] [Google Scholar]
  26. E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in edited by F.H. Clark and R.J. Stern. Nonlinear Analysis, Differential Equations and Control. Kluwer Academic, Dordrecht (1999) 503–549. [Google Scholar]
  27. S.G. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [CrossRef] [MathSciNet] [Google Scholar]
  28. S.G. Peng, Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27 (1993) 125–144. [CrossRef] [MathSciNet] [Google Scholar]
  29. S.G. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37 (1991) 61–74. [CrossRef] [Google Scholar]
  30. S.G. Peng and Y.F. Shi, Infinite horizon forward-backward stochastic differential equations. Stoch. Process. Appl. 85 (2000) 75–92. [CrossRef] [Google Scholar]
  31. M.C. Quenez and A. Sulem, BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123 (2013) 3328–3357. [CrossRef] [Google Scholar]
  32. S. P. Sethi, Optimal Control Theory. Applications to Management Science and Economics, 4rd ed. Springer, Cham (2019). [CrossRef] [Google Scholar]
  33. K. Shell, Applications of Pontryagin’s maximum principle to economics, in Mathematical systems theory and economics (Varenna 1967). Lect. Notes Oper. Res. Math. Econom. Springer, Berlin 11 (1969) 241–292. [Google Scholar]
  34. Y.F. Shi and H.Z. Zhao, Forward–backward stochastic differential equations on infinite horizon and quasilinear elliptic PDEs. J. Math. Anal. Appl. 485 (2020) 123791. [CrossRef] [MathSciNet] [Google Scholar]
  35. R. SiTu, A maximum principle for optimal controls of stochastic systems with random jumps, in Proceedings of National Conference on Control Theory and Applications, Qingdao (1991). [Google Scholar]
  36. V.K. Socgnia and O.M. Pamen, An infinite horizon stochastic maximum principle for discounted control problem with Lipschitz coefficients. J. Math. Anal. Appl. 422 (2015) 684–711. [CrossRef] [MathSciNet] [Google Scholar]
  37. Y.Z. Song, S.J. Tang and Z. Wu, The maximum principle for progressive optimal stochastic control problems with random jumps. SIAM J. Control Optim. 58 (2020) 2171–2187. [CrossRef] [MathSciNet] [Google Scholar]
  38. S.J. Tang and X.J. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994) 1447–1475. [CrossRef] [MathSciNet] [Google Scholar]
  39. C.C. von Weizsäcker, Existence of optimal programs of accumulation for an infinite time horizon. Rev. Econ. Stud. 32 (1965) 85–104. [CrossRef] [Google Scholar]
  40. G.C. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 54 (2009) 1230–1242. [CrossRef] [Google Scholar]
  41. G.C. Wang, Z. Wu and J. Xiong, Maximum principles for forward–backward stochastic control systems with correlated state and observation noises. SIAM J. Control Optim. 51 (2013) 491–524. [CrossRef] [MathSciNet] [Google Scholar]
  42. Q.M. Wei and Z.Y. Yu, Infinite horizon forward–backward SDEs and open-loop optimal controls for stochastic linear-quadratic problems with random coefficients. SIAM J. Control Optim. 59 (2021) 2594–2623. [CrossRef] [MathSciNet] [Google Scholar]
  43. Z. Wu, A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China Inf. Sci. 53 (2010) 2205–2214. [CrossRef] [MathSciNet] [Google Scholar]
  44. Z. Wu, Fully coupled FBSDE with Brownian motion and Poisson process in stopping time duration. J. Aust. Math. Soc. 74 (2003) 249–266. [CrossRef] [MathSciNet] [Google Scholar]
  45. B.X. Yang and J.B. Wu, Infinite horizon optimal control for mean-field stochastic delay systems driven by Teugels martingales under partial information. Optim. Control Appl. Methods 41 (2020) 1371–1397. [CrossRef] [Google Scholar]
  46. J.L. Yin, Forward-backward SDEs with random terminal time and applications to pricing special European-type options for a large investor. Bull. Sci. Math. 135 (2011) 883–895. [CrossRef] [MathSciNet] [Google Scholar]
  47. J.L. Yin, On solutions of a class of infinite horizon FBSDEs. Stat. Probab. Lett. 78 (2008) 2412–2419. [CrossRef] [Google Scholar]
  48. J.L. Yin and X.R. Mao, The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. J. Math. Anal. Appl. 346 (2008) 345–358. [CrossRef] [MathSciNet] [Google Scholar]
  49. J.L. Yin, R. SiTu, On solutions of forward–backward stochastic differential equations with Poisson jumps. Stoch. Anal. Appl. 21 (2003) 1419–1448. [CrossRef] [Google Scholar]
  50. Z.Y. Yu, Infinite horizon jump-diffusion forward–backward stochastic differential equations and their application to backward linear-quadratic problems. ESAIM: Control, Optim. Calc. Var. 23 (2017) 1331–1359. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  51. S.Q. Zhang, J. Xiong and X.D. Liu, Stochastic maximum principle for partially observed forward-backward stochastic differential equations with jumps and regime switching. Sci. China Inf. Sci. 61 (2018) 070211. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.