Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 43 | |
DOI | https://doi.org/10.1051/cocv/2023025 | |
Published online | 01 May 2023 |
- F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 21 (1984) 337–344 [Google Scholar]
- R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
- H. Amann, Linear and Quasilinear Parabolic Problems. Vol. 1. Birkhäuser, Boston (1995). [CrossRef] [Google Scholar]
- J. Bergh and J. Löfström, Interpolation Spaces: An Introduction. Springer-Verlag, Berlin (1976). [CrossRef] [Google Scholar]
- G. Caginalp, An analysis of a phase-field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986) 205–245. [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy in nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [CrossRef] [Google Scholar]
- E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339–364. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM Control Optim. Calc. Var. 22 (2016) 355–370. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E. Casas and K. Kunisch, Optimal control of the two-dimensional evolutionary Navier–Stokes equations with measure valued controls. SIAM J. Control Optim. 59 (2021) 2223–2246. [CrossRef] [MathSciNet] [Google Scholar]
- E. Casas and K. Kunisch, Well-posedness of evolutionary Navier–Stokes equations with forces of low regularity on two dimensional domains. ESAIM Control Optim. Calc. Var. 27 (2021) 61. [CrossRef] [EDP Sciences] [Google Scholar]
- E. Casas and K. Kunisch, Optimal control of the 2D stationary Navier–Stokes equations with measure valued controls. SIAM J. Control Optim. 57 (2019) 1328–1354. [CrossRef] [MathSciNet] [Google Scholar]
- C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17 (2011) 243–266. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- C. Clason E. Casas and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. [CrossRef] [MathSciNet] [Google Scholar]
- C. Clason E. Casas and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Optimal control for a conserved phase field system with a possibly singular potential. Evol. Equ. Control. Theory 7 (2018) 95–116. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73 (2016) 195–225. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli and J. Sprekels, A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4 (2015) 311–325. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli and J. Sprekels, Optimal control of an Allen–Cahn equation with singular potentials and dynamic boundary condition. SIAM J. Control Optim. 7 (2015) 95–116. [Google Scholar]
- J. Diestel and J.J. Uhl, Vector Measures. American Mathematical Society, Providence (1977). [CrossRef] [Google Scholar]
- H.O. Fattorini, Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999). [CrossRef] [Google Scholar]
- S. Frigeri, M. Grasselli and J. Sprekels, Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. 81 (2020) 899–931. [CrossRef] [MathSciNet] [Google Scholar]
- S. Frigeri, E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in 2D. SIAM J. Control Optim. 54 (2016) 221–250. [CrossRef] [MathSciNet] [Google Scholar]
- D. Fujiwara, Lp-theory for characterizing the domain of the fractional powers of –∆ in the half space. J. Fac. Sci. Univ. Tokyo Sect. I 15 (1968) 169–177. [MathSciNet] [Google Scholar]
- Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces. Arch. Rational Mech. Anal. 89 (1985) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
- G. Gilardi and J. Sprekels, Asymptotic limits and optimal control for the Cahn–Hilliard system with convection and dynamic boundary conditions. Nonlinear Anal. 178 (2019) 1–31. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grinfeld and A. Novick-Cohen, The viscous Cahn–Hilliard equation: Morse decomposition and structure of the global attractor. Trans. Am. Math. Soc. 351 (1999) 2375–2406. [CrossRef] [Google Scholar]
- M. Hasanuzzaman, A. Rafferty, M. Sajjia and A.-G. Olabi, Production and treatment of porous glass materials for advanced Usage, in Reference Module in Materials Science and Materials Engineering. Elsevier (2016). [Google Scholar]
- E.C. Herberg, Sparse Discretization of Sparse Control Problems with Measures. Ph.D. thesis, Universität Koblenz–Landau (2021). [Google Scholar]
- M. Hintermüller and D. Wegner, Optimal control of a semi-discrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52 (2014) 747–772. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hintermüller and D. Wegner, Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau Energies, in Topological Optimization and Optimal Transport In the Applied Sciences, edited by M. Bergounioux, É. Oudet, M. Rumpf, G. Carlier, T. Champion and F. Santambrogio. De Gruyter, Berlin (2017). [Google Scholar]
- M. Hintermüller and D. Wegner, Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. J. Convex Anal. 26 (2019) 485–514. [MathSciNet] [Google Scholar]
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting. Springer, Heidelberg (1969). [CrossRef] [Google Scholar]
- C. Kudla, A.T. Blumenau, F. Büllesfeld, N. Dropka, C. Frank-Rotsch, F. Kiessling, O. Klein, P. Lange, W. Miller, U. Rehse, U. Sahr, M. Schellhorn, G. Weidemann, M. Ziem, G. Bethin, R. Fornari, M. Müller, J. Sprekels, V. Trautmann and P. Rudolph. Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module. J. Crystal Growth 365 (2013) 54–58. [CrossRef] [Google Scholar]
- C. Leiter and J. Sprekels, Optimal boundary control of a phase field system modeling nonisothermal phase transitions. Adv. Math. Sci. Appl. 17 (2007) 181–194. [MathSciNet] [Google Scholar]
- J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I. Springer, Berlin (1972). [Google Scholar]
- A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995). [Google Scholar]
- D. Polignone M. E. Gurtin and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 8–15. [Google Scholar]
- K. Pieper K. Kunisch and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. [CrossRef] [MathSciNet] [Google Scholar]
- P. Trautmann K. Kunisch and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. [CrossRef] [MathSciNet] [Google Scholar]
- G.W. Morey, The Properties of Glass, 2nd ed. Reinhold Publishing Corporation, New York (1954). [Google Scholar]
- A. Oberbeck, Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243 (1897) 271–292. [Google Scholar]
- G. Peralta, Distributed optimal control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq system for nonisothermal viscous two-phase flows. Appl. Math. Optim. 84 (2021) S1219–S1279. [CrossRef] [MathSciNet] [Google Scholar]
- G. Peralta, Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on twodimensional bounded domains. J. Evol. Equ. 22 (2022) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
- S. Schuller, Phase separation in glass, in From Glass to Crystal. Nucleation, Growth and Phase Separation: From Research to Applications, edited by D.R. Neuville, L. Cornier, D. Caurant, and L. Montagne. EDP Sciences, Les Ulis (2017) 125–154. [Google Scholar]
- S. Schuller, O. Pinet and B. Bruno, Liquid-liquid phase separation process in borosilicate liquids enriched in molybdenum and phosphorus oxides. J. Am. Ceram. Soc. 94 (2011) 447–454. [CrossRef] [Google Scholar]
- J. Simon, Compact sets in Lp(0, T; B). Ann. Mat. Pur. Appel. 146 (1987) 65–96. [Google Scholar]
- H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Berlin (2001). [CrossRef] [Google Scholar]
- J. Sprekels and S. Zheng, Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions. Adv. Math. Sci. Appl. 1 (1992) 113–125. [MathSciNet] [Google Scholar]
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Berlin (1978). [Google Scholar]
- H. Wolfram, R. Volker and S. Marcel, Control of nucleation in glass ceramics. Phil. Trans. R. Soc. A. 361 (2003) 575–589. [CrossRef] [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I. Springer-Verlag, New York (1986). [CrossRef] [Google Scholar]
- B. Zhou, Simulations of Polymeric Membrane Formation in 2D and 3D. Ph.D. thesis, Massachusetts Institute of Technology (2006). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.