Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 3
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2022081
Published online 11 January 2023
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  2. D. Bucur, G. Buttazzo and C. Nitsch, Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. 107 (2017) 451–463. [Google Scholar]
  3. D. Bucur and A. Giacomini, A variational approach to the isoperimetric inequality for the robin eigenvalue problem. Arch. Ratl. Mech. Anal. 198 (2010) 927–961. [CrossRef] [Google Scholar]
  4. D. Bucur and S. Luckhaus, Monotonicity formula and regularity for general free discontinuity problems. Arch. Ration. Mech. Anal. 211 (2014) 489–511. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bucur, M. Nahon, C. Nitsch and C. Trombetti, Shape optimization of a thermal insulation problem (2021). cvgmt preprint. [Google Scholar]
  6. D. Bucur and A. Giacomini, Shape optimization problems with Robin conditions on the free boundary. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) 1539–1568. [CrossRef] [MathSciNet] [Google Scholar]
  7. L.A. Caffarelli and D. Kriventsov, A free boundary problem related to thermal insulation. Commun. Partial Differ. Equ. 41 (2016) 1149–1182. [CrossRef] [Google Scholar]
  8. A. Cianchi, V. Ferone, C. Nitsch and C. Trombetti, Poincaré trace inequalities in BV(ℝn) with non-standard normalization. J. Geom. Anal. 28 (2018) 3522–3552. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ratl. Mech. Anal. 108 (1989) 195–218. [CrossRef] [Google Scholar]
  10. F. Della Pietra, C. Nitsch, R. Scala and C. Trombetti, An optimization problem in thermal insulation with robin boundary conditions. Commun. Partial Differ. Equ. 46 (2021) 2288–2304. [CrossRef] [Google Scholar]
  11. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition. Textbooks in Mathematics. CRC Press (2015). [Google Scholar]
  12. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag (2001). Reprint of the 1998 edition. [Google Scholar]
  13. F. Maggi, Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). An introduction to geometric measure theory. [Google Scholar]
  14. V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, augmented edition (2011). [CrossRef] [Google Scholar]
  15. M.K. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators. Ann. Matemat. Pura Appl. 80 (1968) 1–122. [CrossRef] [Google Scholar]
  16. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin, Heidelberg (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.