Open Access
Volume 29, 2023
Article Number 81
Number of page(s) 30
Published online 08 November 2023
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press, Oxford 2000). [Google Scholar]
  2. F. Bestehorn, C. Hansknecht, C. Kirches and P. Manns, Mixed-integer optimal control problems with switching costs: a shortest path approach. Math. Progr. 188 (2020) 621–652. [Google Scholar]
  3. M. Burger, M. Gerdts, S. Göttlich and M. Herty, Dynamic programming approach for discrete-valued time discrete optimal control problems with dwell time constraints, in System Modeling and Optimization. Springer International Publishing, Cham (2016) 159–168. [CrossRef] [Google Scholar]
  4. T.M. Caldwell and T.D. Murphey, An adjoint method for second-order switching time optimization, in 49th IEEE Conference on Decision and Control (CDC) (2010) 2155–2162. [CrossRef] [Google Scholar]
  5. H. Cartan, Calcul différentiel. Hermann, Paris (1967). [Google Scholar]
  6. C. Christof and G. Wachsmuth, No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28 (2018) 2097–2130. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Clason, F. Kruse and K. Kunisch, Total variation regularization of multi-material topology optimization. ESAIM: Math. Model. Numer. Anal. 52 (2018) 275–303. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. A. Defant and K. Floret, Tensor Norms and Operator Ideals. Elsevier, Amsterdam (1992). [Google Scholar]
  9. A. De Marchi, On the mixed-integer linear-quadratic optimal control with switching cost. IEEE Control Syst. Lett. 3 (2019) 990–995. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Egerstedt, Y. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Automatic Control 51 (2006) 110–115. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974). [Google Scholar]
  12. S. Göttlich, A. Potschka and U. Ziegler, Partial outer convexification for traffic light optimization in road networks. SIAM J. Sci. Comput. 39 (2017) B53–B75. [CrossRef] [Google Scholar]
  13. F.M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55 (2013) 197–225. [CrossRef] [MathSciNet] [Google Scholar]
  14. O.V. Iftime and M.A. Demetriou, Optimal control of switched distributed parameter systems with spatially scheduled actuators. Automatica 45 (2009) 312–323. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Kirches, P. Manns and S. Ulbrich, Compactness and convergence rates in the combinatorial integral approximation decomposition. Math. Program. 188 (2021) 569–598. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Leyffer and P. Manns, Sequential linear integer programming for integer optimal control with total variation regularization. ESAIM: Control Optim. Calc. Var. 28 (2022) 66. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed. Springer, New York (2006). [Google Scholar]
  18. F. Rüffler and F.M. Hante, Optimal switching for hybrid semilinear evolutions. Nonlinear Anal. Hybrid Syst. 22 (2016) 215–227. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Sager, A benchmark library of mixed-integer optimal control problems, in edited by J. Lee and S. Leyffer. Mixed Integer Nonlinear Programming, Vol. 154 of The IMA Volumes in Mathematics and its Applications. Springer New York, New York, NY (2012). [Google Scholar]
  20. S. Sager and C. Zeile, On mixed-integer optimal control with constrained total variation of the integer control. Comput. Optim. Applic. 78 (2021) 575–623. [CrossRef] [Google Scholar]
  21. M. Severitt and P. Manns, Efficient solution of discrete subproblems arising in integer optimal control with total variation regularization. Technical report, 2022. [Google Scholar]
  22. D. Wachsmuth, Iterative hard-thresholding applied to optimal control problems with L0(Ω) control cost. SIAM J. Control Optim. 57 (2019) 854–879. [CrossRef] [MathSciNet] [Google Scholar]
  23. V.M. Zavala, J. Wang, S. Leyffer, E.M. Constantinescu, M. Anitescu and G. Conzelmann, Proactive energy management for next-generation building, in Proceedings of SimBuild Conference 2010: 4th Conference of IBPSA-USA, Vol. 4 of SimBuild Conference, New York City, USA (2010) 377–385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.