Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 82
Number of page(s) 33
DOI https://doi.org/10.1051/cocv/2023064
Published online 08 November 2023
  1. R. Aïd, D. Possamaï and N. Touzi, Optimal electricity demand response contracting with responsiveness incentives. Math. Oper. Res. 47 (2022) 2112–2137. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Baldacci, D. Possamaï and M. Rosenbaum, Optimal make-take fees in a multi market-maker environment. SIAM J. Financial Math. 12 (2021) 446–486. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Bank and D. Besslich, On a stochastic representation theorem for Meyer-measurable processes and its applications in stochastic optimal control and optimal stopping. Ann. Inst. Henri Poincaré (B) Probab. Statist. 57 (2021) 1336–1368. [Google Scholar]
  4. P. Bank and N. El Karoui, A stochastic representation theorem with applications to optimization and obstacle problems. Ann. Probab. 32 (2004) 1030–1067. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Bank and H. Föllmer, American Options, Multi-armed Bandits, and Optimal Consumption Plans: A Unifying View. Paris–Princeton Lectures on Mathematical Finance. Springer, Berlin, Heidelberg (2002) 1–42. [Google Scholar]
  6. A. Capponi and C. Frei, Dynamic contracting: accidents lead to nonlinear contracts. SIAM J. Financial Math. 6 (2015) 959–983. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Carmona and N. Touzi, Optimal multiple stopping and valuation of swing options. Math. Finance 18 (2008) 239–268. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Cvitanić, D. Possamaï and N. Touzi, Dynamic programming approach to principal-agent problems. Finance Stochast. 22 (2018) 1–37. [CrossRef] [Google Scholar]
  9. J. Cvitanić and J. Zhang, Contract theory in Continuous-time Models. Springer (2012). [Google Scholar]
  10. J. Cvitanić, X. Wan and J. Zhang, Principal-agent problems with exit options. B.E. J. Theor. Econ. 8 (2008) 23. [Google Scholar]
  11. N. El Karoui, Les aspects probabilistes du contrôle stochastique, École d’été de Probabilités de Saint-Flour IX-1979. Springer, Berlin, Heidelberg (1981) 73–238. [Google Scholar]
  12. R. Elie, E. Hubert, T. Mastrolia and D. Possamaï, Mean–field moral hazard for optimal energy demand response management. Math. Finance 31 (2020) 399–473. [Google Scholar]
  13. R. Elie, T. Mastrolia and D. Possamaï, A tale of a principal and many, many agents. Math. Oper. Res. 44 (2019) 440–467. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Elie and D. Possamaï, Contracting theory with competitive interacting agents. SIAM J. Control Optim. 57 (2019) 1157–1188. [CrossRef] [MathSciNet] [Google Scholar]
  15. O.E. Euch, T. Mastrolia, M. Rosenbaum and N. Touzi, Optimal make–take fees for market making regulation. Math. Finance 31 (2021) 109–148. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Hajjej, C. Hillairet and M. Mnif, Optimal stopping contract for Public Private Partnerships under moral hazard. Frontiers of Mathematical Finance 1 (2022) 539–573. [CrossRef] [MathSciNet] [Google Scholar]
  17. N. Hernández Santibáñez, D. Possamaï and C. Zhou, Bank monitoring incentives under moral hazard and adverse selection. J. Optim. Theory Appl. 184 (2020) 988–1035. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Hu, Z. Ren and J. Yang, Principal-agent problem with multiple principals. ArXiv preprint arXiv:1904.01413 (2019). [Google Scholar]
  19. L. Kang, Nash Equilibria in the Continuous-time Principal-agent Problem with Multiple Principals. Ph.D. thesis, Michigan State University (2013). [Google Scholar]
  20. I. Karatzas and S.E. Shreve, Methods of Mathematical Finance. Springer, New York (1998). [Google Scholar]
  21. M. Kobylanski, M.-C. Quenez and E. Rouy-Mironescu, Optimal multiple stopping time problem. Ann. Appl. Probab. 21 (2011) 1365–1399. [CrossRef] [MathSciNet] [Google Scholar]
  22. Y. Lin, Z. Ren, N. Touzi and J. Yang, Random horizon principal-agent problems. SIAM J. Control Optim. 60 (2022) 355–384. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Mastrolia and Z. Ren, Principal-agent problem with common agency without communication. SIAM J. Financial Math. 9 (2018) 775–799. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Nutz and Y. Zhang, Reward design in risk-taking contests, SIAM J. Financial Math. 13 (2022) 129–146. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Peskir and A. Shiryaev, Optimal Stopping and Free-boundary Problems. Birkhäuser Basel (2006). [Google Scholar]
  26. D. Possamaï, X. Tan and C. Zhou, Stochastic control for a class of nonlinear kernels and applications. Ann. Probab. 46 (2018) 551–603. [MathSciNet] [Google Scholar]
  27. Z. Ren, X. Tan, N. Touzi and J. Yang, Entropic optimal planning for path-dependent mean field games. SIAM J. Control Optim. 61 (2023) 1415–1437. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Sannikov, A continuous-time version of the principal-agent problem. Rev. Econ. Stud. 75 (2008) 957–984. [CrossRef] [Google Scholar]
  29. M. Soner, N. Touzi and J. Zhang, Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153 (2012) 149–190. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.