Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 52
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2023020
Published online 03 July 2023
  1. O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2002) 1159–1188. [CrossRef] [Google Scholar]
  2. O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Rational Mech. Anal. 170 (2003) 17–61. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.R. Athreya, V.S. Borkar, K.S. Kumar and R. Sundaresan, Simultaneous small noise limit for singularly perturbed slow-fast coupled diffusions. Appl. Math. Optim. 83 (2021) 2327–2374. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Springer Science & Business Media (2008). [Google Scholar]
  5. M. Bardi and A. Cesaroni, Optimal control with random parameters: a multiscale approach. Eur. J. Control 17 (2011) 30–45. [Google Scholar]
  6. M. Bardi and A. Cesaroni, Liouville properties and critical value of fully nonlinear elliptic operators. J. Diff. Equ. 261 (2016) 3775–3799. [Google Scholar]
  7. M. Bardi, A. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility. SIAM J. Finan. Math. 1 (2010) 230–265. [CrossRef] [Google Scholar]
  8. M. Bardi and H. Kouhkouh, Deep relaxation of controlled stochastic gradient descent via singular perturbations, arXiv preprint arXiv:2209.05564 (2022). [Google Scholar]
  9. V.I. Bogachev, A.I. Kirillov and S.V. Shaposhnikov, The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations. Math. Notes 96 (2014) 855–863. [CrossRef] [MathSciNet] [Google Scholar]
  10. V.S. Borkar and V. Gaitsgory, Averaging of singularly perturbed controlled stochastic differential equations. Appl. Math. Optim. 56 (2007) 169–209. [CrossRef] [MathSciNet] [Google Scholar]
  11. V.S. Borkar and V. Gaitsgory, Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim. 46 (2007) 1562–1577. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun and R. Zecchina, Entropy-SGD: Biasing gradient descent into wide valleys. J. Stat. Mech.: Theory Exp. 2019 (2019) 124018. [CrossRef] [Google Scholar]
  13. P. Chaudhari, A. Oberman, S. Osher, S. Soatto and G. Carlier, Deep relaxation: partial differential equations for optimizing deep neural networks. Res. Math. Sci. 5 (2018) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Da Lio and O. Ley, Uniqueness results for second-order Bellman–Isaacs equations under quadratic growth assumptions and Applications. SIAM J. Control Optim. 45 (2006) 74–106. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. de Feo, The averaging principle for non-autonomous slow-fast stochastic differential equations and an application to a local stochastic volatility model. J. Diff. Equ. 302 (2021) 406–443. [Google Scholar]
  16. L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinb. A: Math. 111 (1989) 359–375. [CrossRef] [Google Scholar]
  17. J. Feng, J.-P. Fouque and R. Kumar, Small-time asymptotics for fast mean-reverting stochastic volatility models. Ann. Appl. Probab. 22 (2012) 1541–1575. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Sølna, Multiscale Stochastic Volatility for Equity, Interest Rate, and credit Derivatives. Cambridge University Press (2011). [CrossRef] [Google Scholar]
  19. D. Ghilli, Viscosity methods for large deviations estimates of multiscale stochastic processes. ESAIM: Control Optim. Calc. Variat. 24 (2018) 605–637. [CrossRef] [EDP Sciences] [Google Scholar]
  20. D. Ghilli and C. Marchi, Rate of convergence for singular perturbations of Hamilton–Jacobi equations in unbounded spaces, arXiv preprint arXiv:2201.04592 (2022). [Google Scholar]
  21. B. Goldys, G. Tessitore, J. Yang and Z. Zhou, Multiscale linear-quadratic stochastic optimal control with multiplicative noise, arXiv preprint arXiv:2011.09238 (2020). [Google Scholar]
  22. G. Guatteri and G. Tessitore, Singular limit of BSDEs and optimal control of two scale stochastic systems in infinite dimensional Spaces. Appl. Math. Optim. 83 (2021) 1025–1051. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Herrmann, P. Imkeller and D. Peithmann, Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: a large deviations approach. Ann. Appl. Probab. 16 (2006) 1851–1892. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Himmelberg, Measurable relations. Fundamenta Mathematicae 87 (1975) 53–72. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Kokotović, H.K. Khalil and J. O’Reilly, Singular perturbation methods in control: analysis and design. SIAM, 1999. [Google Scholar]
  26. H. Kouhkouh, Some asymptotic problems for Hamilton-Jacobi-Bellman equations and applications to global optimization. PhD thesis, University of Padova (2022). [Google Scholar]
  27. H. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems. Springer Science & Business Media (1990). [CrossRef] [Google Scholar]
  28. P.-L. Lions, G. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations, Unpublished preprint (1987). [Google Scholar]
  29. W. Liu, M. Röckner, X. Sun and Y. Xie, Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Diff. Equ. 268 (2020) 2910–2948. [Google Scholar]
  30. L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. CRC Press (2006). [CrossRef] [Google Scholar]
  31. P. Mannucci, C. Marchi and N. Tchou, The ergodic problem for some subelliptic operators with unbounded coefficients. Nonlinear Diff. Equ. Appl. NoDEA 23 (2016) 1–26. [CrossRef] [Google Scholar]
  32. X. Mao, Stochastic Differential Equations and Applications. Elsevier (2007). [Google Scholar]
  33. E. Pardoux and A.Yu. Veretennikov, On the Poisson equation and diffusion approximation. I Ann. Prob. (2001) 1061–1085. [Google Scholar]
  34. E. Pardoux and A.Yu. Veretennikov, On Poisson equation and diffusion approximation 2. Ann. Prob. 31 (2003) 1166–1192. [CrossRef] [Google Scholar]
  35. E. Pardoux and A.Yu. Veretennikov, On the Poisson equation and diffusion approximation 3. Ann. Prob. 33 (2005) 1111–1133. [CrossRef] [Google Scholar]
  36. M. Pavon, On local entropy, stochastic control and deep neural networks. IEEE Control Syst. Lett. 7 (2023) 437–441. [CrossRef] [MathSciNet] [Google Scholar]
  37. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Vol. 293. Springer Science & Business Media (2013). [Google Scholar]
  38. M. Röckner and L. Xie, Averaging principle and normal deviations for multiscale stochastic systems. Commun. Math. Phys. 383 (2021) 1889–1937. [CrossRef] [Google Scholar]
  39. K. Spiliopoulos, Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optim. 67 (2013) 123–161. [CrossRef] [MathSciNet] [Google Scholar]
  40. D.W. Stroock and S.R.S. Varadhan, Multidimensional Diffusion Processes, Vol. 233. Springer Science & Business Media (1997). [Google Scholar]
  41. A. Świech, Singular perturbations and optimal control of stochastic systems in infinite dimension: HJB equations and viscosity Solutions. ESAIM: Control Optim. Calc. Variat. 27 (2021) 6. [CrossRef] [EDP Sciences] [Google Scholar]
  42. A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stochastic Processes Appl. 70 (1997) 115–127. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.