Open Access
Volume 29, 2023
Article Number 53
Number of page(s) 28
Published online 18 July 2023
  1. H. Abdoul-Anziz, L. Jakabčin and P. Seppecher, Homogenization of an elastic material reinforced by very strong fibres arranged along a periodic lattice. Proc. Roy. Soc. A 477 (2021) 20200620. [CrossRef] [Google Scholar]
  2. H. Abdoul-Anziz and P. Seppecher, Homogenization of periodic graph-based elastic structures. J. École Polytech. – Math. 5 (2018) 259–288. [CrossRef] [Google Scholar]
  3. H. Abdoul-Anziz and P. Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6 (2018) 213–250. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Abdoul-Anziz, P. Seppecher and C. Bellis, Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms. Math. Mech. Solids 24 (2019) 3976–3999. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  6. H. Altenbach, M. Birsan and V.A. Eremeyev, Cosserat-type rods, in Generalized Continua from the Theory to Engineering Applications. Springer (2013) 179–248. [CrossRef] [Google Scholar]
  7. E. Barchiesi, F. dell’Isola, A.M. Bersani and E. Turco, Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm. Int. J. Non-Linear Mech. 128 (2021) 103628. [CrossRef] [Google Scholar]
  8. E. Barchiesi, F. dell’Isola, P. Seppecher and E. Turco, A beam model for duoskelion structures derived by asymptotic homogenization and its application to axial loading problems. Eur. J. Mech. A Solids. 98 (2023) 104848. [CrossRef] [Google Scholar]
  9. A. Braides, A handbook of Γ-convergence, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3. Elsevier (2006) 101–213. [CrossRef] [Google Scholar]
  10. Camar-Eddine and P.M. Seppecher, Determination of the closure of the set of elasticity functionals. Arch. Rational Mech. Anal. 170 (2003) 211–245. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. De Angelo, L. Placidi, N. Nejadsadeghi and A. Misra, Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters. Mech. Res. Commun. 103 (2020) 103462. [CrossRef] [Google Scholar]
  12. F. dell’Isola, A. Della Corte, A. Battista and E. Barchiesi, Extensible beam models in large deformation under distributed loading: a numerical study on multiplicity of solutions, in Higher Gradient Materials and Related Generalized Continua. Springer (2019) 19–41. [CrossRef] [Google Scholar]
  13. I. Giorgio and A. Della Corte, Dynamics of 1d nonlinear pantographic continua. Nonlinear Dyn. 88 (2017) 21–31. [CrossRef] [Google Scholar]
  14. M. Golaszewski, R. Grygoruk, I. Giorgio, M. Laudato and F. Di Cosmo, Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Continuum Mech. Thermodyn. 31 (2019) 1015–1034. [CrossRef] [Google Scholar]
  15. A. Misra, N. Nejadsadeghi, M. De Angelo and L. Placidi, Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing. Continuum Mech. Thermodyn. 32 (2020) 1497–1513. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.-J. Moreau, Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273–299. [CrossRef] [Google Scholar]
  17. N. Nejadsadeghi, M. De Angelo, A. Misra and F. Hild, Multiscalar DIC analyses of granular string under stretch reveal non-standard deformation mechanisms. Int. J. Solids Struct. (2022) 111402. [CrossRef] [Google Scholar]
  18. N. Nejadsadeghi, F. Hild and A. Misra, Parametric experimentation to evaluate chiral bars representative of granular motif. Int. J. Mech. Sci. 221 (2022) 107184. [CrossRef] [Google Scholar]
  19. N. Nejadsadeghi and A. Misra, Axially moving materials with granular microstructure. Int. J. Mech. Sci. 161 (2019) 105042. [CrossRef] [Google Scholar]
  20. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [Google Scholar]
  21. C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9 (1997) 241–257. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Spagnuolo and D. Scerrato, The mechanical diode: on the tracks of James Maxwell employing mechanical–electrical analogies in the design of metamaterials, in Developments and Novel Approaches in Biomechanics and Metamaterials. Springer (2020) 459–469. [CrossRef] [Google Scholar]
  23. E. Turco, E. Barchiesi and F. dell’Isola, In-plane dynamic buckling of duoskelion beam-like structures: discrete modeling and numerical results. Math. Mech. Solids 27 (2022) 1164–1184. [CrossRef] [MathSciNet] [Google Scholar]
  24. K Yosida, Functional Analysis. Springer (1974). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.