Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 51
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2023034
Published online 03 July 2023
  1. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  2. L. Baudouin, A. Mercado and A. Osses, A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem. Inverse Probl. 23 (2007) 257–278. [CrossRef] [Google Scholar]
  3. N. Burq and P. Gérard, A necessary and sufficient condition for the exact controllability of the wave equation. C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997) 749–752. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. 34 (2001) 817–870. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Chernov and R. Markarian, Chaotic Billiards, Vol. 127 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2006). [CrossRef] [Google Scholar]
  6. B. Dehman and J.-P. Raymond, Exact controllability for the Lamé system. Math. Control Relat. Fields 5 (2015) 743–760. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Gérard, Microlocal defect measures. Commun. Partial Diff. Eq. 16 (1991) 1761–1794. [CrossRef] [Google Scholar]
  8. G. Lebeau, Damped wave equation, in Algebraic and Geometric Methods in Mathematical Physics. Proceedings of the 1st Ukrainian-French-Romanian Summer School, Kaciveli, Ukraine, September 1–14, 1993. Kluwer Academic Publishers, Dordrecht (1996) 73–109. [CrossRef] [Google Scholar]
  9. G. Lebeau, J. Le Rousseau, T. Peppino and T. Emmanuel, Some new results for the controllability of waves equations. Control of PDEs Conference, 2014. [Google Scholar]
  10. G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148 (1999) 179–231. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988). [Google Scholar]
  12. L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary. J. Math. Pures Appl. 79 (2000) 227–269. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control Optim. 41 (2002) 1554–1566. [CrossRef] [MathSciNet] [Google Scholar]
  14. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd ed. Wiley Series in Pure and Applied Optics. Wiley, New York, NY (2007). [Google Scholar]
  15. C.C. Stolk and M.V. de Hoop, Microlocal analysis of seismic inverse scattering in anisotropic elastic media. Commun. Pure Appl. Math. 55 (2002) 261–301. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.