Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 49 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/cocv/2023040 | |
Published online | 28 June 2023 |
- G.J. Bautista and A.F. Pazoto, A note on the control and stabilization of a higher-order water wave model. Discrete Contin. Dyn. Syst. Ser. B 28 (2023) 1513–1527. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Bona, X. Carvajal, M. Panthee and M. Scialom, Higher-order Hamiltonian model for undirectional water waves. J. Nonlinear Sci. 28 (2018) 543–577. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283–318. [Google Scholar]
- J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. Nonlinear theory. Nonlinearity 17 (2004) 925–952. [CrossRef] [MathSciNet] [Google Scholar]
- X. Carvajal, M. Panthee and R. Pastrán, On the well-posedness, ill-posedness and norm-inflation for a higher order water wave model on a periodic domain. Nonlinear Anal. Theory Methods Applic. 192 (2020) 111713. [CrossRef] [Google Scholar]
- T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation, Oxford Lecture Series in Mathematics and its Applications, Vol. 13. The Clarendon Press, Oxford University Press, New York (1998). [Google Scholar]
- B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrodinger equation on a compact surface. Math. Z. 254 (2006) 729–749. [Google Scholar]
- K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Cont. Optim. 35 (1997) 1574–1590. [CrossRef] [Google Scholar]
- R.S. Phillips Perturbation theory for semi-groups of linear operators. Trans. Am. Math. Soc. 74 (1953) 199–221. [CrossRef] [Google Scholar]
- L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682. [Google Scholar]
- L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. J. Diff. Equ. 254 (2013) 141–178. [CrossRef] [Google Scholar]
- M. Slemrod, A note on complete controllability and stabilizability for linear control systems in a Hilbert space. SIAM J. Cont. Optim. 12 (1974) 500–508. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.