Open Access
Volume 29, 2023
Article Number 50
Number of page(s) 37
Published online 28 June 2023
  1. N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017) 439–467. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Adolfsson and L. Escauriaza, C1,α domains and unique continuation at the boundary. Comm. Pure Appl. Math. 50 (1997) 935–969. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Adolfsson, L. Escauriaza and C. Kenig, Convex domains and unique continuation at the boundary. Rev. Mat. Iberoamericana 11 (1995) 513–525. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35 (2015) 5725–5767. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 39–71. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem. Interfaces Free Bound. 16 (2014) 419–458. [CrossRef] [MathSciNet] [Google Scholar]
  7. L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) 767–807. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Part. Differ. Equ. 36 (2011) 1353–1384. [CrossRef] [Google Scholar]
  9. S.-K. Chua, Some remarks on extension theorems for weighted Sobolev spaces. Illinois J. Math. 38 (1994) 95–126. [MathSciNet] [Google Scholar]
  10. A. De Luca, V. Felli and S. Vita, Strong unique continuation and local asymptotics at the boundary for fractional elliptic equations. Adv. Math. 400 (2022) Paper No. 108279, 67. [CrossRef] [Google Scholar]
  11. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  12. M.M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Commun. Part. Differ. Equ. 39 (2014) 354–397. [CrossRef] [Google Scholar]
  13. V. Felli and A. Ferrero, Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) 957–1019. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Felli and G. Siclari, Sobolev-type regularity and Pohozaev-type identities for some degenerate and singular problems. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022) 553–574. [CrossRef] [MathSciNet] [Google Scholar]
  15. N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ. Math. J. 35 (1986) 245–268. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems. Math. Nachr. 289 (2016) 831–844. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16 (2014) 1111–1171. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Kufner, Weighted Sobolev Spaces. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1985). [Google Scholar]
  19. I. Kukavica and K. Nyström, Unique continuation on the boundary for Dini domains. Proc. Amer. Math. Soc. 126 (1998) 441–446. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  21. A. Lischke, G. Pang, M. Gulian, et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404 (2020) 109009, 62. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Opic and A. Kufner, Hardy-type inequalities, Vol. 219 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1990). [Google Scholar]
  23. A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials. Commun. Part. Differ. Equ. 40 (2015) 77–114. [CrossRef] [Google Scholar]
  24. R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 831–855. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Sire, S. Terracini and S. Vita, Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions. Commun. Part. Differ. Equ. 46 (2021) 310–361. [CrossRef] [Google Scholar]
  26. P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Part. Differ. Equ. 35 (2010) 2092–2122. [CrossRef] [Google Scholar]
  27. X. Tao and S. Zhang, Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials. J. Math. Anal. Appl. 339 (2008) 70–84. [CrossRef] [MathSciNet] [Google Scholar]
  28. X. Tolsa, Unique continuation at the boundary for harmonic functions in C1 domains and Lipschitz domains with small constant. Commun. Pure Appl. Math. 76 (2023) 305–336. [CrossRef] [Google Scholar]
  29. H. Yu, Unique continuation for fractional orders of elliptic equations. Ann. PDE 3 (2017) Paper No. 16, 21. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.