Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 84
Number of page(s) 42
DOI https://doi.org/10.1051/cocv/2023074
Published online 17 November 2023
  1. V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics. Springer-Verlag Berlin Heidelberg (2008) xxi+525. [Google Scholar]
  2. S. Adly, H. Attouch and A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction. Nonsmooth Mechanics and Analysis. Adv. Mech. Math., Vol. 12, Springer, New York (2006) 289–304. [CrossRef] [Google Scholar]
  3. S. Adly, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics. Springer Briefs in Mathematics (2017) xv+159. [Google Scholar]
  4. R. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. WorldScientific (1993) 324. [Google Scholar]
  5. H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011) xvi+468. [Google Scholar]
  6. S.P. Bhat and D.S. Bernstein, Lyapunov analysis of finite-time differential equations, in Proceedings of the American Control Conference. IEEE, Washington, USA (1995) 1831–1832. [Google Scholar]
  7. S.P. Bhat and D.S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000) 751–766. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.J. Bejarano and L.M. Fridman, High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control. 9 (2010) 1920–1929. [CrossRef] [Google Scholar]
  9. T. Bonnesen and W. Fenchel, Theory of convex Bodies. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. BCS Associates (1987) x+172. [Google Scholar]
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York (2011) xiv+600. [Google Scholar]
  11. B. Brogliato, Nonsmooth Mechanics: Models, Dynamics and Control. 3rd edn. Springer (2016). [CrossRef] [Google Scholar]
  12. A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results. Trans. Am. Math. Soc. 360 (2008) 103–121. [CrossRef] [Google Scholar]
  13. F. Chernousko, I. Ananievskii and S. Reshmin, Control of Nonlinear Dynamical Systems: Methods and Applications. Springer-Verlag (2008) xii+396. [Google Scholar]
  14. G. Colombo, P. Gidoni and E. Vilches, Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Discrete Contin. Dyn. Syst. Ser. A 42 (2022) 737–757. [CrossRef] [Google Scholar]
  15. F. Dinuzzo and A. Ferrara, Higher order sliding mode controllers with optimal reaching. IEEE Trans. Automat. Contr. 54 (2009) 2126–2136. [CrossRef] [Google Scholar]
  16. H. Du, C. Qian, S. Yang and S. Li, Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. Automatica 49 (2013) 601–609. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.O. Frederick and P.J. Armstrong, Convergent internal stresses and steady cyclic states of stress. J. Strain Anal. 1 (1966) 154–159. [CrossRef] [Google Scholar]
  18. A. Filippov, Differential Equations with Discontinuous Right-hand Sides. Springer Dordrecht, ser. Mathematics and Its Applications (Soviet Series) (1988) x+304. [Google Scholar]
  19. P. Gidoni, Rate-independent soft crawlers. Q. J. Mech. Appl. Math. 71 (2018) 369–409. [Google Scholar]
  20. B. Grünbaum, Convex Polytopes. 2nd edn. Graduate Texts in Mathematics, 221. Springer-Verlag, New York (2003) xvi+468. [Google Scholar]
  21. I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity. ESAIM: COCV 27 (2021) S8. [CrossRef] [EDP Sciences] [Google Scholar]
  22. I. Gudoshnikov and O. Makarenkov, Structurally stable families of periodic solutions in sweeping processes of networks of elastoplastic springs. Phys. D 406 (2020) 132443. [CrossRef] [MathSciNet] [Google Scholar]
  23. I. Gudoshnikov, Y. Jiao, O. Makarenkov and D. Chen, Sweeping Process Approach to Stress Analysis in Elastoplastic Lattice Springs Models with Applications to Hyperuniform Network Materials. (2022) submitted, preprint available at arXiv:2204.03015. [Google Scholar]
  24. I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems. SIAM J. Control Optim. 60 (2022) 1320–1346. [CrossRef] [MathSciNet] [Google Scholar]
  25. W.M. Haddad and A. L’Afflitto, Finite-Time Stabilization and Optimal Feedback Control. IEEE Trans. Automat. Contr. 61 (2016) 1069–1074. [CrossRef] [Google Scholar]
  26. W. Han and B.D. Reddy, Plasticity. Mathematical Theory and Numerical Analysis. 2nd edn. Interdisciplinary Applied Mathematics, 9. Springer, New York (2013). [Google Scholar]
  27. W.P.M.H. Heemels, J.M. Schumacher and S. Weiland, Linear complementarity systems. SIAM J. Appl. Math. 60 (2000) 1234–1269. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001) x+259. [Google Scholar]
  29. Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46 (2002) 231–236. [CrossRef] [Google Scholar]
  30. Y. Hong, J. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Contr. 51 (2006) 858–862. [CrossRef] [Google Scholar]
  31. P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications, 8. Gakkōtosho Co. Ltd., Tokyo (1996) viii+211. [Google Scholar]
  32. M. Kunze and M.D.M. Marques, An introduction to Moreau’s sweeping process, in Impacts in Mechanical Systems. Lecture Notes in Physics, edited by Brogliato, Vol. 551. Springer, Berlin, Heidelberg (2000). [CrossRef] [Google Scholar]
  33. J. Matoušek and B. Gärtner, Understanding and Using Linear Programming. Berlin, Springer (2007) viii+226. [Google Scholar]
  34. B. Mordukhovich, Variational Analysis and Applications. Springer Monographs in Mathematics. Springer Cham (2018) xix+622. [Google Scholar]
  35. J.-J. Moreau, On Unilateral Constraints, Friction and Plasticity. New Variational Techniques in Mathematical Physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973). Edizioni Cremonese, Rome (1974) 171–322. [Google Scholar]
  36. J.-J. Moreau, Application of convex analysis to the treatment of elastoplastic systems, in Applications of Methods of Functional Analysis to Problems in Mechanics: Joint Symposium IUTAM/IMU held in Marseille, September 1–6, 1975, edited by P. Germain and B. Nayroles. Springer (1976) 56–89. [Google Scholar]
  37. J.-J. Moreau, Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177 (1999) 329–349. [CrossRef] [Google Scholar]
  38. J.-J. Moreau, An introduction to unilateral dynamics, in Novel Approaches in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, edited by M. Frémond and F. Maceri, Vol. 14. Springer, Berlin, Heidelberg (2004). [Google Scholar]
  39. J. Nocedal and S.J. Wright, Numerical optimization. 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York, NY, (2006) xxii+664. [Google Scholar]
  40. H. Pan, W. Sun and H. Gao, Finite-time vibration control for active suspension systems, in Vibration Control and Actuation of Large-Scale Systems, Emerging Methodologies and Applications in Modelling. Academic Press (2020) 185–223. [Google Scholar]
  41. C. Qian and W. Lin, Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control. Lett. 42 (2001) 185–200. [CrossRef] [Google Scholar]
  42. R.T. Rockafellar, Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970) xviii+451. [Google Scholar]
  43. A. Schrijver, Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons Ltd. (1987) 484. [Google Scholar]
  44. S. Seo, H. Shim and J.H. Seo, Global finite-time stabilization of a nonlinear system using dynamic exponent scaling. 47th IEEE Conference, Decision and Control, Cancun, Mexico, Dec. 9–11 (2008) 3805–3810. [Google Scholar]
  45. A. Shapiro, Differentiability properties of metric projections onto convex sets. J. Optim. Theory Appl. 169 (2016) 953–964. [CrossRef] [MathSciNet] [Google Scholar]
  46. V. Utkin, J. Guldner and J. Shi, Sliding Mode Control in Electro-mechanical Systems. CRC Press (2009) 503. [Google Scholar]
  47. S.T. Venkataraman and S. Gulati, Terminal sliding modes: a new approach to nonlinear control systems. Proc. 5th Int. Conf. Advanced Robotics, Pisa, Italy (1991) 443–448. [Google Scholar]
  48. S. Yua, X. Yub, B. Shirinzadehc and Z. Mand, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41 (2005) 1957–1964. [Google Scholar]
  49. X. Zhang, G. Feng and Y. Sun, Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48 (2012) 499–504. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.