Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 83
Number of page(s) 19
DOI https://doi.org/10.1051/cocv/2023060
Published online 08 November 2023
  1. D. Anderson and B. Moore, Linear Optimal Control. Prentice-Hall, Englewood Cliffs, NJ (1971). [Google Scholar]
  2. A. Bouhtouri, D. Hinrichsen and A. Pritchard, H type control for discrete-time stochastic systems. Int. J. Robust Nonlinear Control 9 (1999) 923-948. [CrossRef] [Google Scholar]
  3. F. Chen, Stability and stabilization for discrete-time Markovian jump quadratic systems with incomplete knowledge of transition probabilities, in Proceedings of the 39th Chinese Control Conference (2020) 825-830. [Google Scholar]
  4. B. Chen and A. Zadrozny, An anticipative feedback solution for the infinite-horizon, linear-quadratic, dynamic, Stackelberg game. J. Econ. Dyn. Control 26 (2002) 1397-1416. [CrossRef] [Google Scholar]
  5. E. Dockner, S. Jorgensen, N. Long and G. Sorger, Differential Games in Economics and Management Science. Cambridge University Press, Cambridge, UK (2000). [CrossRef] [Google Scholar]
  6. R. Eftimie, L. Bramson and D. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73 (2011) 2-32. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. G. Freiling, G. Jank and R. Lee, Existence and uniqueness of open-loop Stackelberg equilibria in linear-quadratic differential games. J. Optim. Theory Appl. 110 (2001) 515-544. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Huang, W. Zhang and H. Zhang, Infinite horizon linear quadratic optimal control for discrete-time stochastic systems. Asian J. Control 10 (2008) 608-615. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Johnson, T. Hiramatsu, N. Fitz-Coy and W. Dixon, Asymptotic Stackelberg optimal control design for an uncertain Euler Lagrange system. IEEE Conf. Decis. Control, Atlanta, GA, USA (2020) 6686-6891. [Google Scholar]
  10. M. Jungers, On linear-quadratic Stackelberg games with time preference rates. IEEE Trans. Automatic Control 53 (2008) 621-625. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Li, J. Cruz and A. Simaan, An Approach to discrete-time incentive feedback Stackelberg games. IEEE Trans. Syst. Cybernet. 32 (2002) 472-481. [CrossRef] [Google Scholar]
  12. H. Mukaidania and H. Xu, Infinite horizon linear-quadratic Stackelberg games for discrete-time stochastic systems. Automatica 76 (2017) 301-308. [CrossRef] [Google Scholar]
  13. M. Rami and X. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans. Automatic Control 45 (2001) 1131-1143. [Google Scholar]
  14. K. Trejo, J. Clempner and A. Poznyak, Adapting strategies to dynamic environments in controllable Stackelberg security games, in Proceedings of IEEE 55th Conference on Decision and Control (2016) 5484-5489. [Google Scholar]
  15. F. Wei, W. Wang and J. Wang, Dynamics and stability analysis of a Stackelberg mixed duopoly game with price competition in insurance market. Discrete Dyn. Nat. Soc. 2021 (2021) 1-18. [Google Scholar]
  16. J. Xu, H. Zhang and T. Chai, Necessary and sufficient condition for two-player Stackelberg strategy. IEEE Trans. Automatic Control 60 (2015) 1356-1361. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Xu and X. Zhao, Adaptive dynamic programming for a class of two-player Stackelberg differential games. Int. Conf. Syst. Sci. Eng., Kagawa, Japan (2020) 1-6. [Google Scholar]
  18. W. Zhang and B. Chen, On stabilizability and exact observability of stochastic systems with their applications. Automatica 24 (2004) 87-94. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Zhang and J. Xu, Control for Itô stochastic systems with input delay. IEEE Trans. Automatic Control 62 (2017) 350-365. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Zhang and L. Guo, Controllability of stochastic game-based control systems. SIAM J. Control Optim. 57 (2019) 3799-3826. [Google Scholar]
  21. H. Zhang, L. Huang and H. Xie, Infinite horizon stochastic H2/H control for discrete-time systems with state and disturbance dependent noise. Automatica 44 (2008) 2306-2316. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Zhang, H. Wang and L. Li, Adapted and casual maximum principle and analytical solution to optimal control for stochastic multiplicativenoise systems with multiple input-delays, in Proceedings of the 51st IEEE Conference Decision Control (2012) 2122-C2127. [Google Scholar]
  23. H. Zhang, L. Li, J. Xu and M. Fu, Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE Trans. Automatic Control 60 (2015) 2599-2613. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Zhang, C. Yang and H. Wang, The influence of entanglement on complex dynamics of a quantum Stackelberg duopoly with heterogeneous expectations. Quant. Inform. Process. 21 (2022) 1-14. [CrossRef] [Google Scholar]
  25. M. Zhu and S. Martinez, Stackelberg-game analysis of correlated attacks in cyber-physical systems. Am. Control Conf., San Francisco, CA, USA (2011) 4063-4068. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.