Open Access
Volume 30, 2024
Article Number 4
Number of page(s) 37
Published online 22 January 2024
  1. A.A. Agrachev, Is it possible to recognize local controllability in a finite number of differentiations? in Open Problems in Mathematical Systems and Control Theory. Comm. Control Engin. Ser. Springer, London (1999) 15–18. [Google Scholar]
  2. K. Beauchard and F. Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems. J. Differ. Equ. 264 (1018) 3704–3774. [Google Scholar]
  3. K. Beauchard and F. Marbach, A unified approach of obstructions to small-time local controllability for scalar-input systems. arXiv preprint arXiv:2205.14114 (2022). [Google Scholar]
  4. U. Boscain, D. Cannarsa, V. Franceschi and M. Sigalotti, Local controllability does imply global controllability. arXiv preprint arXiv:2110.06631 (2021). [Google Scholar]
  5. K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. (1957) 163–178. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-M. Coron, Control and Nonlinearity. Mathematical Surveys and Monographs, Vol. 136. AMS, Providence, RI (2007). [Google Scholar]
  7. M. Fliess, Développements fonctionnels en indéterminées non commutatives des solutions d’équations différentielles non linéaires forcées. CR Acad. Sci. Paris Sér. A-B 287 (1978) 1133–1135. [Google Scholar]
  8. M. Fliess, Fonctionnelles causales non linéaires et indéterminees non commutatives. Bull. Soc. Math. France 109 (1981) 340 [Google Scholar]
  9. A. Friedman, Partial Differential Equations of Parabolic type. Courier Dover Publications (2008). [Google Scholar]
  10. L. Giraldi and J.-B. Pomet, Local controllability of the two-link magneto-elastic micro-swimmer. IEEE Trans. Automatic Control 62 (2017) 2512–2518. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Giraldi, P. Lissy, C. Moreau and J.-B. Pomet, Addendum to “Local controllability of the two-link magneto-elastic microswimmer”. IEEE Trans. Automatic Control 63 (2018) 2303–2305. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Hermann, On the accessibility problem in control theory, in International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics. Elsevier (1963) 325–332. [CrossRef] [Google Scholar]
  13. H. Hermes, Local controllability and sufficient conditions in singular Problems. J. Differ. Equ. 20 (1976) 213–232. [CrossRef] [Google Scholar]
  14. H. Hermes, On local controllability. SIAM J. Control Optim. 20 (1982) 211–220. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Jurdjevic, Geometric Control Theory. Cambridge Studies in Advanced Mathematics, Vol. 51. Cambridge University Press (1997). [Google Scholar]
  16. M. Kawski, A necessary condition for local controllability, in Differential Geometry: The Interface between Pure and Applied Mathematics. Contemporary Mathematics, Vol. 68. AMS, Providence, RI (1987) 143–155. [Google Scholar]
  17. M. Kawski, Nilpotent Lie algebras of vectorfields and local controllability of nonlinear systems, Ph.D. dissertation, University of Colorado, 1986. [Google Scholar]
  18. M. Kawski, High-order small-time local controllability, in Nonlinear Controllability and Optimal Control. Monogr. Textbooks Pure Appl. Math, Vol. 133. Dekker, New York (1990) 431–467. [Google Scholar]
  19. M. Kawski, On the problem whether controllability is finitely determined, in Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan. Citeseer, 2006. [Google Scholar]
  20. M. Krastanov, A necessary condition for small-time local controllability. J. Dyn. Control Syst. 4 (1998) 425–456. [CrossRef] [Google Scholar]
  21. E.B. Lee and L. Markus, Foundations of Optimal Control Theory. John Wiley & Sons Inc., New York-London-Sydney (1967). [Google Scholar]
  22. C. Moreau, Local controllability of a magnetized Purcell’s swimmer. IEEE Control Syst. Lett. 3 (2019) 637–642. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Nagano, Linear differential systems with singularities and an application to transitive lie algebras. J. Math. Soc. Japan 18 (1966) 398–404. [CrossRef] [MathSciNet] [Google Scholar]
  24. E.D. Sontag, Mathematical Control Theory, 2nd edn. Texts in Applied Mathematics, Vol. 6. Springer-Verlag, New York (1998). [Online]. Available: [CrossRef] [Google Scholar]
  25. G. Stefani, Local properties of nonlinear control systems, in Int. School Bierutowice, September 1984. [Google Scholar]
  26. G. Stefani, On the local controllability of a scalar-input control system, in Theory and Applications of Nonlinear Control Systems, edited by C.I. Byrnes and A. Lindquist. North-Holland, Amsterdam (1986) 167–179 (selected papers from 7th MTNS Symposium, Stockholm, June 10-14, 1985). [Google Scholar]
  27. H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J. Control Optim. 21 (1983) 686–713. [CrossRef] [MathSciNet] [Google Scholar]
  28. H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158–194. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.