Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 5
Number of page(s) 18
DOI https://doi.org/10.1051/cocv/2024002
Published online 09 February 2024
  1. W. He and Y. Sun, Stationary Markov perfect equilibria in discounted stochastic games. J. Econom. Theory 169 (2017) 35–61. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.S. Nowak and T. Raghavan, Existence of stationary correlated equilibria with symmetric information for discounted stochastic games. Math. Oper. Res. 17 (1992) 519–526. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Dufour and T. Prieto-Rumeau, Nash equilibria for total expected reward absorbing Markov games: the constrained and unconstrained cases. Appl. Math. Optim. 89 (2024) 34. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Altman, Constrained Markov Decision Processes. Stochastic Modeling. Chapman & Hall/CRC, Boca Raton, FL (1999). [Google Scholar]
  5. E.A. Feinberg and A.B. Piunovskiy, Sufficiency of deterministic policies for atomless discounted and uniformly absorbing MDPs with multiple criteria. SIAM J. Control Optim. 57 (2019) 163–191. [CrossRef] [MathSciNet] [Google Scholar]
  6. E.A. Feinberg and U.G. Rothblum, Splitting randomized stationary policies in total-reward Markov decision processes. Math. Oper. Res. 37 (2012) 129–153. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.B. Piunovskiy, Examples in Markov decision processes. Vol. 2 of Imperial College Press Optimization Series. Imperial College Press, London (2013). [Google Scholar]
  8. V.S. Borkar, Convex analytic methods in Markov decision processes. in Handbook of Markov decision processes. Vol. 40 of Internat. Ser. Oper. Res. Management Sci.. Kluwer Acad. Publ., Boston, MA (2002) 347–375. [Google Scholar]
  9. O. Hernández-Lerma and J.-B. Lasserre, Discrete-time Markov control processes: basic optimality criteria. Vol. 30 of Applications of Mathematics. Springer-Verlag, New York (1996). [Google Scholar]
  10. O. Hernández-Lerma and J.-B. Lasserre, Further topics on discrete-time Markov control processes. Vol. 42 of Applications of Mathematics. Springer-Verlag, New York (1999). [Google Scholar]
  11. A.B. Piunovskiy, Optimal control of random sequences in problems with constraints. Vol. 410 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1997). [Google Scholar]
  12. M. Schäl, On dynamic programming: compactness of the space of policies. Stochastic Processes Appl. 3 (1975) 345–364. [CrossRef] [MathSciNet] [Google Scholar]
  13. E.J. Balder, On ws-convergence of product measures. Math. Oper. Res. 26 (2001) 494–518. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Neveu, Bases mathématiques du calcul des probabilités. Masson et Cie, Éditeurs, Paris (1970). Préface de R. Fortet, Deuxième édition, revue et corrigée. [Google Scholar]
  15. C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006). [Google Scholar]
  16. L.C. Florescu and C. Godet-Thobie, Young Measures and Compactness in Measure Spaces. De Gruyter, Berlin (2012). [CrossRef] [Google Scholar]
  17. M. Valadier, Désintégration d’une mesure sur un produit. C. R. Acad. Sci. Paris Sér. A 276 (1973) 33–35. [MathSciNet] [Google Scholar]
  18. E.B. Dynkin and A.A. Yushkevich, Controlled Markov Processes. Vol. 235 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1979). [CrossRef] [Google Scholar]
  19. P. Gänssler, Compactness and sequential compactness in spaces of measures. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 17 (1971) 124–146. [CrossRef] [Google Scholar]
  20. V.I. Bogachev, Measure Theory. Vol. I, II. Springer-Verlag, Berlin (2007). [CrossRef] [Google Scholar]
  21. E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 (1984) 570–598. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.