Open Access
Volume 30, 2024
Article Number 2
Number of page(s) 38
Published online 22 January 2024
  1. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. [CrossRef] [MathSciNet] [Google Scholar]
  2. K. Beauchard, Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Beauchard, Controllability of a quantum particle in a 1D variable domain. ESAIM Control Optim. Calc. Var. 14 (2008) 105–147. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. K. Beauchard, J. Borgne and F. Marbach, On expansions for nonlinear systems error estimates and convergence issues. Comptes Rendus. Math. 361 (2023) 97–189. [CrossRef] [Google Scholar]
  5. K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328–389. [Google Scholar]
  6. K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. 94 (2010) 520–554. [CrossRef] [MathSciNet] [Google Scholar]
  7. K. Beauchard and F. Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems. J. Diff. Equ. 264 (2018) 3704–3774. [CrossRef] [Google Scholar]
  8. K. Beauchard and F. Marbach, Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations. J. Math. Pures Appl. 136 (2020) 22–91. [Google Scholar]
  9. K. Beauchard and M. Morancey, Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Math. Control Relat. Fields 4 (2014) 125–160. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Bournissou, Contrôlabilité d’équations aux dérivées partielles non linéaire. Theses, École normale supérieure de Rennes (2022). [Google Scholar]
  11. M. Bournissou, Small-time local controllability of the bilinear Schrödinger equation, despite a quadratic obstruction, thanks to a cubic term, 2022. hal-03600696. [Google Scholar]
  12. M. Bournissou, Local controllability of the bilinear 1D Schrödinger equation with simultaneous estimates. Math. Control Related Fields 13 (2023) 1047–1080. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Bournissou, Quadratic behaviors of the 1D linear Schrödinger equation with bilinear control. J. Diff. Equ. 351 (2023) 324–360. [CrossRef] [Google Scholar]
  14. N. Boussaid, M. Caponigro and T. Chambrion, Regular propagators of bilinear quantum systems. J. Funct. Anal. 278 (2020) 108412. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. [Google Scholar]
  16. E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de vries equation on any critical domain. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (200) 457–475. [Google Scholar]
  17. T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-M. Coron, On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well. Comptes Rendus Math. 342 (2006) 103–108. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  20. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear Kdv equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-M. Coron, A. Koenig and H.-M. Nguyen, On the small-time local controllability of a KdV system for critical lengths. J. Eur. Math. Soc. (2022). [Google Scholar]
  22. J.-M. Coron, H.-M. Nguyen and A. Koenig, Lack of local controllability for a water-tank system when the time is not large enough. hal-03588552, 2022. [Google Scholar]
  23. A. Duca and V. Nersesyan, Local exact controllability of the 1D nonlinear Schrödinger equation in the case of Dirichlet boundary conditions. hal-03579006, February 2022. [Google Scholar]
  24. K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups. Universitext. Springer, New York, NY (2006). [Google Scholar]
  25. H. Frankowska, An open mapping principle for set-valued maps. J. Math. Anal. Appl. 127 (1987) 172–180. [CrossRef] [MathSciNet] [Google Scholar]
  26. H. Frankowska, Local controllability of control systems with feedback. J. Optim. Theory Appl. 60 (1989) 277–296. [CrossRef] [MathSciNet] [Google Scholar]
  27. H. Hermes and M. Kawski, Local controllability of a single input, affine system, in Nonlinear Analysis and Applications (Arlington, Tex., 1986). Vol. 109 of Lecture Notes in Pure and Appl. Math. Dekker, New York (1987) 235–248. [Google Scholar]
  28. M. Kawski, High-order small-time local controllability, in Nonlinear Controllability and Optimal Control. Vol. 133 of Monogr. Textbooks Pure Appl. Math. Dekker, New York (1990) 431–467. [Google Scholar]
  29. M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 1743–1765. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Morancey, Simultaneous local exact controllability of 1D bilinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 501–529. [CrossRef] [MathSciNet] [Google Scholar]
  31. V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) 901–915. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm,. Sup. Pisa Cl. Sci. 13 (1959) 115–162. [Google Scholar]
  33. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). [CrossRef] [Google Scholar]
  34. J.-P. Puel, Local exact bilinear control of the Schrödinger equation. ESAIM Control Optim. Calc. Var. 22 (2016) 1264–1281. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  35. H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987). [Google Scholar]
  36. G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry. Vol. 74 of Lecture Notes in Chemistry. Springer, Berlin (2000) 75–92. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.