Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 57
Number of page(s) 32
DOI https://doi.org/10.1051/cocv/2024045
Published online 12 August 2024
  1. J.L. Lions, Hierarchic control. Proc. Math. Sci. 104 (1994) 295–304. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. von Stackelberg, Markform und Gleichgewicht, Vol. 4. Springer, Berlin, Germany (1934). [Google Scholar]
  3. J.L. Lions, Some remarks on Stackelberg’s optimization. Math. Model Methods Appl. Sci. 4 (1994) 477–487. [CrossRef] [Google Scholar]
  4. L.L. Djomegne Njoukoué, C. Kenne, R. Dorville and P. Zongo, Stackelberg—Nash null controllability for a non linear coupled degenerate parabolic equations. Appl. Math. Optim. 87 (2023) 1–41. [CrossRef] [MathSciNet] [Google Scholar]
  5. L.L. Djomegne Njoukoué, G. Mophou and G. Deugoué, Stackelberg control of a backward linear heat equation. Adv. Evol. Equ. Evolut. Processes Appl. 10 (2019) 127–149. [Google Scholar]
  6. R.G. Foko Tiomela, G. Mophou and G. N’guérékata, Hierarchic control of a linear heat equation with missing data. Math. Methods Appl. Sci. 43 (2020) 6476–6497. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Kéré, M. Mercan and G. Mophou, Control of Stackelberg for a coupled parabolic equations. J. Dyn. Control Syst. 23 (2017) 709–733. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Mercan, Optimal control for distributed linear systems sub jected to null-controllability. Appl. Anal. 92 (2013) 1928–1943. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Mercan, Optimal Control for Distributed Linear Systems Subjected to Null Controllability with Constraints on the State. Vol. 37 of the series Springer Proceedings in Mathematics & Statistics (2013) 213–232. [Google Scholar]
  10. M. Mercan and O. Nakoulima, Control of Stackelberg for a two stroke problem. Dyn. Continuous Discrete Impulsive Syst. Ser. B Appl. Algorithms 22 (2015) 441–463. [MathSciNet] [Google Scholar]
  11. O. Nakoulima, Optimal control for distributed systems sub ject to null controllability. Application to discriminating sentinels. ESAIM Control Optim. Calc. Variations 13 (2007) 623-638. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. L.L. Djomegne Njoukoue and G. Deugoue, Stackelberg control in an unbounded domain for a parabolic equation. J. Nonlinear Evol. Equ. Appl. 2021 (2021) 95-118. [Google Scholar]
  13. V. Hernandez-Santamaria and L. de Teresa, Robust Stackelberg controllability for linear and semilinear heat equations. Evol. Equ. Control Theory 7 (2018) 247-273. [CrossRef] [MathSciNet] [Google Scholar]
  14. F.D. Araruna, E. Fernandez-Cara and L.C. da Silva, Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls. Commun. Contemp. Math. 22 (2019) 1950034. [Google Scholar]
  15. V. Hernandez-Santamaría and L. Peralta, Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete Continuous Dyn. Syst. Ser. B 25 (2020) 161–190. [CrossRef] [MathSciNet] [Google Scholar]
  16. N. Carreño and M.C. Santos, Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation with boundary and distributed controls. J. Diff. Equ. 343 (2023) 1–63. [CrossRef] [Google Scholar]
  17. E. Fernàndez-Cara, Q. Lü and E. Zuazua, Null controllability of linear heat and wave equations with nonlocal spatial terms. SIAM J. Control Optim. 54 (2016) 2009–2019. [CrossRef] [MathSciNet] [Google Scholar]
  18. N.I. Kavallaris and T. Suzuki, Non-local Partial Differential Equations for Engineering and Biology. Vol. 31 of Mathematics for Industry (Tokyo). Mathematical Modeling and Analysis. Springer, Cham (2018). [Google Scholar]
  19. B. Allal, G. Fragnelli and J. Saihi, Null controllability for degenerate parabolic equations with a nonlocal space term. Discrete Continuous Dyn. Syst. S (2022) doi:10.3934/dcdss.2022164. [Google Scholar]
  20. M. De Leo, S.F. de la Vega and D.R. Diego, Controllability of Schriödinger equation with a nonlocal term. ESAIM Control Optim. Calc. Variations 20 (2014) 23–41. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. P. Lissy and E. Zuazua, Internal controllability for parabolic systems involving analytic non-local terms. Chinese Ann. Math. Ser. B 39 (2018) 281–296. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity. J. Diff. Equ. 264 (2018) 3664–3703. [CrossRef] [Google Scholar]
  23. U. Biccari and V. Hernàndez-Santamaría, Null controllability of linear and semilinear nonlocal heat equations with an additive integral kernel. SIAM J. Control Optim. 57 (2019) 2924–2938. [CrossRef] [MathSciNet] [Google Scholar]
  24. V. Hernandez-Santamaria and K. Le Balc’h, Null controllability of a nonlocal semilinear heat equation. Appl. Math. Optim. 84 (2021) 1435–1483. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.L. Lions, Equations différentielles opérationnelles: et problèmes aux limites, Vol. 111. Springer-Verlag (2013). [Google Scholar]
  26. A.V. Fursikov and Y.O. Imanuvilov, Controllability of evolution equations. Lecture Notes Series, Research Institute of Mathematics, Vol. 34. Seoul National University Seoul, Korea (1996). [Google Scholar]
  27. L. de Teresa, Insensitizing controls for a semilinear heat equation: Semilinear heat equation. Commun. Part. Diff. Equ. 25 (2000) 39–72. [CrossRef] [Google Scholar]
  28. L.L. Djomegne Njoukoué, Hierarchic control for a nonlinear parabolic equation in an unbounded domain. Appl. Anal. (2021) 1–34. doi:10.1080/00036811.2021.1991327. [CrossRef] [Google Scholar]
  29. G. Mophou, M. Kéré and L.L. Djomegne Njoukoué, Robust hierarchic control for a population dynamics model with missing birth rate. Math. Control Signals Syst. 32 (2020) 209–239. [CrossRef] [Google Scholar]
  30. F.D. Araruna, E. Fernàndez-Cara and M.C. Santos, Stackelberg–Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim. Calc. Variations 21 (2015) 835–856. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  31. Y.O. Imanuvilov, J.P. Puel and M. Yamamoto, Carleman estimates for second order non homogeneous parabolic equations. (2010) to appear. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.