Open Access
Volume 30, 2024
Article Number 8
Number of page(s) 39
Published online 09 February 2024
  1. B. Dacorogna, Direct methods in the calculus of variations. Vol. 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008). [Google Scholar]
  2. C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60 (1992) 259–268. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Genzel, M. Marz and R. Seidel, Compressed sensing with 1D total variation: Breaking sample complexity barriers via non-uniform recovery. Inform. Inference 11 (2021) 203–250. [Google Scholar]
  6. T. Miyata and Y. Sakai, Vectorized total variation defined by weighted l infinity norm for utilizing inter channel dependency, in 2012 19th IEEE International Conference on Image Processing (2012) 3057–3060. [CrossRef] [Google Scholar]
  7. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40 (2011) 120–145. [CrossRef] [Google Scholar]
  8. M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252 (2012) 4455–4480. [CrossRef] [Google Scholar]
  9. A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional. Confluentes Math. 3 (2011) 617–635. [CrossRef] [Google Scholar]
  10. P.B. Mucha and P. Rybka, A note on a model system with sudden directional diffusion. J. Stat. Phys. 146 (2012) 975–988. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Nakayasu and P. Rybka, Integrability of the derivative of solutions to a singular one-dimensional parabolic problem. Topol. Methods Nonlinear Anal. 52 (2018) 239–257. [MathSciNet] [Google Scholar]
  12. F. Alter, V. Caselles and A. Chambolle, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29–53. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [CrossRef] [Google Scholar]
  14. V. Caselles, K. Jalalzai and M. Novaga, On the jump set of solutions of the total variation flow. Rend. Semin. Mat. Univ. Padova 130 (2013) 155–168. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6 (2007) 879–894. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Valkonen, The jump set under geometric regularization. Part 1: basic technique and first-order denoising. SIAM J. Math. Anal. 47 (2015) 2587–2629. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Moll, The anisotropic total variation flow. Math. Ann. 332 (2005) 177–218. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Lasica, S. Moll and P.B. Mucha, Total variation denoising in l1 anisotropy. SIAM J. Imaging Sci. 10 (2017) 1691–1723. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Lasica and P. Rybka, Existence of W1,1 solutions to a class of variational problems with linear growth on convex domains. Indiana Univ. Math. J. 70 (2021) 2427–2450. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Giacomelli and M. Lasica, A local estimate for vectorial total variation minimization in one dimension. Nonlinear Anal. 181 (2019) 141–146. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Mercier, Continuity results for TV-minimizers. Indiana Univ. Math. J. 67 (2018) 1499–1545. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Chambolle and M. Novaga, Existence and uniqueness for planar anisotropic and crystalline curvature flow, in Variational methods for evolving objects. Vol. 67 of Adv. Stud. Pure Math.. Math. Soc. Japan [Tokyo] (2015) 87-113. [Google Scholar]
  23. F. Demengel and R. Temam, Convex functions of a measure and applications. Indiana Univ. Math. J. 33 (1984) 673–709. [CrossRef] [MathSciNet] [Google Scholar]
  24. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  25. Y. Reshetnyak, Weak convergence of completely additive vector functions on a set. Sibirski Mat. Zh. 9 (1968) 1386–1394. [Google Scholar]
  26. R.T. Rockafellar, Convex analysis. Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1970). [Google Scholar]
  27. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge Univeristy Press (1993). [CrossRef] [Google Scholar]
  28. G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem – div (du/|du|) = u in R2. SIAM J. Math. Anal. 36 (2005) 1095–1129. [CrossRef] [Google Scholar]
  29. M. Ghomi, The problem of optimal smoothing for convex functions. Proc. Amer. Math. Soc. 130 (2002) 2255–2259. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Anzellotti, The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290 (1985) 483–501. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). (50). [Google Scholar]
  32. F. Andreu-Vaillo, V. Caselles and J.M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals. Vol. 223 of Progress in Mathematics. Birkhäuser Verlag, Basel (2004). [Google Scholar]
  33. S. Moll and F. Smarrazzo, The Neumann problem for one-dimensional parabolic equations with linear growth Lagrangian: evolution of singularities. J. Evol. Equ. 22 (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.