Open Access
Issue |
ESAIM: COCV
Volume 30, 2024
|
|
---|---|---|
Article Number | 73 | |
Number of page(s) | 45 | |
DOI | https://doi.org/10.1051/cocv/2024059 | |
Published online | 07 October 2024 |
- B. A Malomed, B.-F. Feng, and T. Kawahara. Stabilized kuramoto-sivashinsky system. Physical Review E, 64 (2001) 046304. [CrossRef] [Google Scholar]
- J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes a données incomplètes, in Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics (Spanish) (Málaga, 1989). Univ. Malaga, Malaga (1990) 43–54. [Google Scholar]
- O. Bodart and C. Fabre, Controls insensitizing the norm of the solution of a semilinear heat equation. J. Math. Anal. Appl. 195 (1995) 658–683. [CrossRef] [MathSciNet] [Google Scholar]
- L. de Teresa, Insensitizing controls for a semilinear heat equation. Commun. Part. Diff. Eq. 25 (2000) 39–72. [CrossRef] [Google Scholar]
- O. Bodart, M. Gonzalez-Burgos and R. Perez-Garcla, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. Commun. Part. Diff. Eq. 29 (2004) 1017–1050. [CrossRef] [Google Scholar]
- O. Bodart, M. Gonzalez-Burgos and R. Perez-Garcla, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient. Nonlinear Anal. 57 (2004) 687–711. [CrossRef] [MathSciNet] [Google Scholar]
- O. Bodart, M. González-Burgos and R. Perez-Garcia, A local result on insensitizing controls for a semilinear heat equation with nonlinear boundary Fourier conditions. SIAM J. Control Optim. 43 (2004) 955–969. [CrossRef] [MathSciNet] [Google Scholar]
- S. Guerrero, Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46 (2007) 379–394. [Google Scholar]
- N. Carreño, Insensitizing controls for the Boussinesq system with no control on the temperature equation. Adv. Diff. Eq. 22 (2017) 235–258. [Google Scholar]
- N. Carrenño, S. Guerrero and M. Gueye, Insensitizing controls with two vanishing components for the threedimensional Boussinesq system. ESAIM Control Optim. Calc. Var. 21 (2015) 73–100. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- N. Carreno and M. Gueye, Insensitizing controls with one vanishing component for the Navier-Stokes system. J. Math. Pures Appl. 101 (2014) 27–53. [CrossRef] [MathSciNet] [Google Scholar]
- M. Gueye, Insensitizing controls for the Navier-Stokes equations. Ann. Inst. H. Poincare Anal. Non Linéaire 30 (2013) 825–844. [CrossRef] [MathSciNet] [Google Scholar]
- B.M.R. Calsavara, N. Carrenno and E. Cerpa, Insensitizing controls for a phase field system. Nonlinear Anal. 143 (2016) 120–137. [CrossRef] [MathSciNet] [Google Scholar]
- F. Boyer, V. Hernandez-Santamaria and L. de Teresa. Insensitizing controls for a semilinear parabolic equation: a numerical approach. Math. Control Relat. Fields 9 (2019) 117–158. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kassab, Negative and positive controllability results for coupled systems of second and fourth order parabolic equations. Working paper or preprint (2020). [Google Scholar]
- S. Ervedoza, P. Lissy and Y. Privat, Desensitizing control for the heat equation with respect to domain variations. J. Eéc. Polytech. Math. 9 (2022) 1397–1429. [CrossRef] [Google Scholar]
- P. Lissy, Y. Privat and Y. Simpore, Insensitizing control for linear and semi-linear heat equations with partially unknown domain. ESAIM Control Optim. Calc. Var. 25 (2019) Paper No. 50, 21. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Capistrano-Filho and T.Y. Tanaka, Controls insensitizing the norm of solution of a Schrödinger type system with mixed dispersion. arXiv preprint, arXiv:2010.15104 (2020). [Google Scholar]
- K. Bhandari, Insensitizing control problem for the Hirota-Satsuma system of KdV-KdV type. Nonlinear Anal. 239 (2024) Paper No. 113422, 30. [CrossRef] [Google Scholar]
- L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure Appl. Anal. 8 (2009) 457–471. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ammar-Khodja, A. Benabdallah, M. Gonzalez-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
- O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations. ESAIM Control Optim. Calc. Var. 16 (2010) 247–274. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E. Cerpa, A. Mercado and A.F. Pazoto, Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 53 (2015) 1543–1568. [CrossRef] [MathSciNet] [Google Scholar]
- N. Carrenno and E. Cerpa, Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. 106 (2016) 670–694. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
- O.Y. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227–274. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation. Taiwanese J. Math. 16 (2012) 1991–2017. [MathSciNet] [Google Scholar]
- K. Bhandari and V. Hernandez-Santamaria, An insensitizing control problem for a linear stabilized Kuramoto-Sivashinsky system. arXiv:2203.04379v1 (2022). [Google Scholar]
- V. Hernandez-Santamaria and L. de Teresa, Some remarks on the hierarchic control for coupled parabolic PDEs, in Recent advances in PDEs: analysis, numerics and control. Vol. 17 of SEMA SIMAI Springer Ser. Springer, Cham (2018) 117–137. [CrossRef] [Google Scholar]
- L.C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.