Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 74
Number of page(s) 33
DOI https://doi.org/10.1051/cocv/2024042
Published online 07 October 2024
  1. B. Helffer and J. Sjöstrand, Puits multiples en mecanique semi-classique iv etude du complexe de witten. Commun. Part. Differ. Equ. 10 (1985) 245–340. [CrossRef] [Google Scholar]
  2. E. Witten, Supersymmetry and morse theory. J. Differ. Geom. 17 (1982) 661–692. [Google Scholar]
  3. A.V. Fursikov and O.Y. Emanuilov, Controllability of Evolution Equations, Vol. 34. Seoul National University (1996). [Google Scholar]
  4. D. Chae, O.Y. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with neumann boundary conditions. J. Dyn. Control Syst. 2 (1996) 449–483. [CrossRef] [Google Scholar]
  5. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef] [Google Scholar]
  6. E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM: Control Optim. Calc. Var. 12 (2006) 442–465. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. A. Khoutaibi and L. Maniar, Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evol. Equ. Control Theory 9 (2020) 535. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Maniar, M. Meyries and R. Schnaubelt, Null controllability for parabolic equations with dynamic boundary conditions. Evol. Equ. Control Theory 6 (2017) 381. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [Google Scholar]
  10. J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Vol. I Masson, Paris (1988) X+537 [Google Scholar]
  11. J.A. Bárcena-Petisco, Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term. ESAIM: Control Optim. Calc. Var. 27 (2021) 106. [CrossRef] [EDP Sciences] [Google Scholar]
  12. S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion Equation. Commun. Part. Differ. Equ. 32 (2007) 1813–1836. [CrossRef] [Google Scholar]
  13. F. Ettahri, J.A. Bárcena-Petisco, I. Boutaayamou and L. Maniar, On uniform null-controllability of tangential transport-diffusion equations with vanishing viscosity limit. arXiv:2308.07497 (2023). [Google Scholar]
  14. J.-M. Coron and S. Guerrero, Singular optimal control: a linear 1-D parabolic–hyperbolic example. Asymptotic Anal. 44 (2005) 237–257. [MathSciNet] [Google Scholar]
  15. O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852–868. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Lissy, A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation. Comptes Rendus Math. 350 (2012) 591–595. [CrossRef] [Google Scholar]
  17. P. Lissy, An application of a conjecture due to ervedoza and zuazua concerning the observability of the heat equation in small time to a conjecture due to coron and guerrero concerning the uniform controllability of a convection–diffusion equation in the vanishing viscosity limit. Syst. Control Lett. 69 (2014) 98–102. [CrossRef] [Google Scholar]
  18. P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-d transport–diffusion equation. J. Differ. Equ. 259 (2015) 5331–5352. [CrossRef] [Google Scholar]
  19. C. Laurent and M. Léautaud, On uniform controllability of 1d transport equations in the vanishing viscosity limit. Comptes Rendus Math. 361 (2023) 265–312. [CrossRef] [Google Scholar]
  20. Y. Amirat and A. Münch, On the controllability of an advection–diffusion equation with respect to the diffusion parameter: asymptotic analysis and numerical simulations. Acta Math. Applic. Sinica, Engl. Ser. 35 (2019) 54–110. [CrossRef] [Google Scholar]
  21. Y. Amirat and A. Munch, Internal layer intersecting the boundary of a domain in a singular advection-diffusion equation. Asymptotic Anal. (2022) 1–47, in press. [Google Scholar]
  22. C. Laurent and M. Léautaud, On uniform observability of gradient flows in the vanishing viscosity limit. J. École Polytechn. Math. 8 (2021) 439–506. [CrossRef] [Google Scholar]
  23. J.A. Bárcena-Petisco, Uniform controllability of a stokes problem with a transport term in the zero-diffusion limit. SIAM J. Control Optim. 58 (2020) 1597–1625. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Cornilleau and S. Guerrero, Controllability and observability of an artificial advection–diffusion problem. Math. Control Signals Syst. 24 (2012) 265–294. [CrossRef] [Google Scholar]
  25. P. Cornilleau and S. Guerrero, On the cost of null-control of an artificial advection-diffusion problem. ESAIM: Control Optim. Calc. Var. 19 (2013) 1209–1224. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  26. O. Glass and S. Guerrero, On the uniform controllability of the burgers Equation. SIAM J. Control Optim. 46 (2007) 1211–1238. [CrossRef] [MathSciNet] [Google Scholar]
  27. O. Glass and S. Guerrero, Some exact controllability results for the linear kdv equation and uniform controllability in the zero-dispersion limit. Asymptotic Anal. 60 (2008) 61–100. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.A. Bárcena-Petisco, M. Cavalcante, G.M. Coclite, N. de Nitti and E. Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits. hal-03233211 (2021). [Google Scholar]
  29. N. Carreño and P. Guzmán, On the cost of null controllability of a fourth-order parabolic equation. J. Differ. Equ. 261 (2016) 6485–6520. [CrossRef] [Google Scholar]
  30. K. Kassab, Uniform controllability of a transport equation in zero fourth order equation-dispersion limit. HAL- 03080969 (2020). [Google Scholar]
  31. M. López-García and A. Mercado, Uniform null controllability of a fourth-order parabolic equation with a transport term. J. Math. Anal. Applic. 498 (2021) 124979. [CrossRef] [Google Scholar]
  32. I. Boutaayamou, S.-E. Chorfi, L. Maniar and O. Oukdach, The cost of approximate controllability of heat equation with general dynamical boundary conditions. Portugal. Math. 78 (2021) 65–99. [CrossRef] [Google Scholar]
  33. A. López, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741–808. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Bendahmane and F.W. Chaves-Silva, Null controllability of a degenerated reaction–diffusion system in cardiac electro-physiology. Comptes Rendus Math. 350 (2012) 587–590. [CrossRef] [Google Scholar]
  35. S.N. Kružkov, First order quasilinear equations in several independent Variables. Math. USSR-Sbornik 10 (1970) 217. [CrossRef] [Google Scholar]
  36. C.M. Dafermos and C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Vol. 3. Springer (2005). [CrossRef] [Google Scholar]
  37. W. Arendt and A.F. ter Elst, The dirichlet-to-neumann operator on rough Domains. J. Differ. Equ. 251 (2011) 2100–2124. [CrossRef] [Google Scholar]
  38. P. Grisvard, Elliptic problems in nonsmooth domains. Stud. Math. 24 (1985) 49–52. [Google Scholar]
  39. W. Arendt and A. ter Elst, From forms to semigroups. Spectral Theory Math. Syst. Theory Evol. Equ. Differ. Diff. Equ. 221 (2012) 47–69. [Google Scholar]
  40. V. Ivrii, 100 years of Weyl’s law. Bull. Math. Sci. 6 (2016) 379–452. [CrossRef] [MathSciNet] [Google Scholar]
  41. D. Robert and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5. Evolution Problems I. Springer-Verlag, Berlin (1992). [Google Scholar]
  42. R.E. Showalter, Monotone Operators in Banach Space and nonlinear Partial Differential Equations, Vol. 49. American Mathematical Society (2013). [CrossRef] [Google Scholar]
  43. H. Brezis, Analyse Fonctionnelle: Théorie et Applications (Masson, Paris) (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.