Open Access
Volume 30, 2024
Article Number 34
Number of page(s) 40
Published online 16 April 2024
  1. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22 (2005) 73–99. [Google Scholar]
  2. A. Mainik, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. [Google Scholar]
  3. A. Braides, B. Cassano, A. Garroni and D. Sarrocco, Quasi-static damage evolution and homogenization: a case study of non-commutability. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) 309–328. [Google Scholar]
  4. E. Davoli and M.G. Mora, A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence. Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013) 615–660. [Google Scholar]
  5. M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Methods Appl. Sci. 21 (2011) 1961–1986. [Google Scholar]
  6. J.-F. Babadjian, Quasistatic evolution of a brittle thin film. Calc. Var. Partial Differ. Equ. 26 (2006) 69–118. [Google Scholar]
  7. A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains. J. Elasticity 109 (2012) 235–273. [Google Scholar]
  8. A. Giacomini and M. Ponsiglione, A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Ration. Mech. Anal. 180 (2006) 399–447. [Google Scholar]
  9. G.A. Francfort and A. Giacomini, On periodic homogenization in perfect elasto-plasticity. J. Eur. Math. Soc. 16 (2014) 409–461. [Google Scholar]
  10. J.-F. Babadjian, F. Iurlano and F. Rindler, Concentration versus oscillation effects in brittle damage. Commun. Pure Appl. Math. 74 (2021) 1803–1854. [Google Scholar]
  11. G.A. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium. Eur. J. Mech. A Solids 12 (1993) 149–189. [Google Scholar]
  12. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [Google Scholar]
  13. G.A. Francfort and A. Garroni, A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal. 182 (2006) 125–152. [Google Scholar]
  14. G. Allaire, Shape Optimization by the Homogenization Method. Vol. 146 of Applied Mathematical Sciences. Springer (2002). [Google Scholar]
  15. G. Allaire and V. Lods, Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 439–466. [Google Scholar]
  16. P.-M. Suquet, Sur les équations de la plasticité : existence et regularité des solutions. J. Méc. 20 (1981) 3–39. [Google Scholar]
  17. M.G. Mora, Relaxation of the Hencky model in perfect plasticity. J. Math. Pures Appl. 106 (2016) 725–743. [Google Scholar]
  18. G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [Google Scholar]
  19. R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal. 214 (2014) 575–615. [Google Scholar]
  20. V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Control Optim. Calc. Var. 22 (2016) 883–912. [Google Scholar]
  21. V. Crismale, Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann. Mat. Pura Appl. 196 (2017) 641–685. [Google Scholar]
  22. A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40 (2008) 1201–1245. [Google Scholar]
  23. A. Griffith, The phenomena of rupture and flow in solids. Philos. T. Roy. Soc. A CCXXI-A (1920) 163–198. [Google Scholar]
  24. I. Fonseca and G. Leoni, Modern Methods in the calculus of Variations: Lp Spaces. Springer Monographs in Mathematics. Springer Science+Business Media, LLC, 233 Spring Street, New York (2007). [Google Scholar]
  25. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973). [Google Scholar]
  26. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
  27. R.-T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey (1968). [Google Scholar]
  28. I. Ekeland and R. Temam, Convex analysis and variational problems. Classics in Applied Mathematics, Vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999). [Google Scholar]
  29. R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). [Google Scholar]
  30. A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146 (1999) 23–58. [Google Scholar]
  31. A. Garroni and C.J. Larsen, Threshold-based quasi-static brittle damage evolution. Arch. Ration. Mech. Anal. 194 (2009) 585–609. [Google Scholar]
  32. J.-J. Marigo, L’approche variationnelle de la rupture: un exemple de collaboration fructueuse entre mécaniciens et mathématiciens. Comptes Rendus Méc. (2023) 1–23. https://10.5802/crmeca.170. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.