Open Access
Volume 30, 2024
Article Number 33
Number of page(s) 27
Published online 16 April 2024
  1. R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7 (1990) 1–76. [Google Scholar]
  2. R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. 5 (1996) 159–333. [Google Scholar]
  3. R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia of Mathematics and its Applications, Vol. 117. Cambridge University Press, New York (2008). [Google Scholar]
  4. S. Ervedoza and E. Zuazua, On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics. Springer, New York (2013). [Google Scholar]
  5. E. Trélat and E. Zuazua, editors. Numerical Control: Part A, Vol. 23 of Handbook of Numerical Analysis. North Holland, Amsterdam (2022). [Google Scholar]
  6. E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Rosier and L. Rosier, Numerical control of the wave equation and Huygens’ principle. Math. Rep. 24 (2022) 319–338. [Google Scholar]
  8. B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation. Int. J. Robust Nonlinear Control 10 (2000) 629–643. [CrossRef] [Google Scholar]
  9. P. Martin, L. Rosier and P. Rouchon, Null controllability of the heat equation using flatness. Automatica 50 (2014) 3067–3076. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Russell, Exact boundary value controllability theorems for wave and heat processes in star-complemented regions, in Differential Games and Control Theory (Proc. NSF-CBMS Regional Res. Conf. University of Rhode Island, Kingston, RI (1973). Lecture Notes Pure Appl. Math. 10 (1974) 291–319. Dekker, New York. [Google Scholar]
  11. G. Chen, Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17 (1979) 66–81. [Google Scholar]
  12. R. Rebarber and G. Weiss, An extension of Russell’s principle on exact controllability, in Proceedings of the Fourth ECC, 1997. CD-ROM. [Google Scholar]
  13. K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. [Google Scholar]
  14. S.W. Hansen and M. Tucsnak, Some new applications of Russell’s principle to infinite dimensional vibrating systems. Annu. Rev. Control 44 (2017) 184–198. [Google Scholar]
  15. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Springer, Basel (2009). [Google Scholar]
  16. P. Pedregal, F. Periago and J. Villena, A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems. Stud. Appl. Math. 121 (2008) 27–47. [Google Scholar]
  17. N. Cindea, S. Micu and M. Tucsnak, An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 49 (2011) 1283–1305. [Google Scholar]
  18. H.T. Banks, K. Ito and B. Wang, Exponentially stable approximations of weakly damped wave equations, in International Series of Numerical Mathematics, Vol. 100. Birkhäuser, Basel (1991) 1–33. [Google Scholar]
  19. U. Biccari, A. Marica and E. Zuazua, Propagation of one- and two-dimensional discrete waves under finite difference approximation, Found. Comput. Math. 20 (2020) 1401–1438. [Google Scholar]
  20. S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math. 113 (2009) 377–415. [Google Scholar]
  21. S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 20–48. [Google Scholar]
  22. S. Ervedoza and E. Zuazua, The Wave Equation: Control and Numerics. Control and Stabilization of PDEs, edited by P.M. Cannarsa and J.M. Coron. Lecture Notes Math. 2048 (2012) 245–340. [Google Scholar]
  23. A. Münch and A.F. Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM: COCV 13 (2007) 265–293. [Google Scholar]
  24. K. Ramdani, T. Takahashi and M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations. Application to LQR optimization problems. ESAIM: COCV 13 (2007) 503–527. [Google Scholar]
  25. L.R. Tcheugoue Tebou and E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003) 563–598. [Google Scholar]
  26. L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-D wave equation. Adv. Comput. Math. 26 (2007) 337–365. [Google Scholar]
  27. P.A. Raviart and J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson (1998). [Google Scholar]
  28. N. Cîndea, S. Micu and J. Morais Pereira, Approximation of periodic solutions for a dissipative hyperbolic equation. Numer. Math. 124 (2013) 559–601. [Google Scholar]
  29. K. Ito, K. Ramdani and M. Tucsnak, A time reversal based algorithm for solving initial data inverse problems. AIMS 4 (2011) 641–652. [Google Scholar]
  30. K. Ramdani, T. Takahashi and M. Tucsnak, Space semidiscretization of the problem of internal stabilization for the beam equation. ESAIM: Proc. 18 (2007) 48–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.