Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 67
Number of page(s) 40
DOI https://doi.org/10.1051/cocv/2023078
Published online 12 September 2024
  1. M. Badra, Local controllability to trajectories of the magnetohydrodynamic equations. J. Math. Fluid Mech. 16 (2014) 631–660. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften 343. Springer-Verlag Berlin Heidelberg (2011). [CrossRef] [Google Scholar]
  3. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlineaires. Ann. Sci. Éc. Norm. Supér. 14 (1981) 209–246. [CrossRef] [Google Scholar]
  4. F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied Mathematical Sciences, 183. Springer, New York (2013) xiv+525. [Google Scholar]
  5. J.-Y. Chemin, Le systéme de Navier–Stokes incompressible soixante dix ans aprés Jean Leray. Actes des Journées Mathématiques à la Mémoire de Jean Leray, 99–123, Sémin. Congr., 9, Soc. Math. France, Paris (2004). [Google Scholar]
  6. J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. 173 (2011) 983–1012. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5 (1992) 295–312. [CrossRef] [Google Scholar]
  8. J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  9. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  10. J.-M. Coron, F. Marbach and F. Sueur, Small-time global exact controllability of the Navier–Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. 22 (2020) 1625–1673. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.-M. Coron, F. Marbach, F. Sueur and P. Zhang, Controllability of the Navier–Stokes equation in a rectangle with a little help of a distributed phantom force. Ann. PDE 5 (2019) 49. [Google Scholar]
  12. G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal. 46 (1972) 241–279. [CrossRef] [MathSciNet] [Google Scholar]
  13. A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes Ser., Vol. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, (1996) iv+163. [Google Scholar]
  14. G.-P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state Problems. 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011) xiv+1018. [Google Scholar]
  15. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var. 5 (2000) 1–44. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chinese Ann. Math. Ser. B30 (2009) 333–378. [CrossRef] [MathSciNet] [Google Scholar]
  17. O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for second order nonhomogeneous parabolic equations. Preprint. [Google Scholar]
  18. I. Kukavica, M. Novack and V. Vicol, Exact boundary controllability for the ideal magneto-hydrodynamic equations. J. Diff. Eq. 318 (2022) 94–112. [CrossRef] [Google Scholar]
  19. X. Li and D. Wang, Global solutions to the incompressible magnetohydrodynamic equations. Commun. Pure Appl. Anal. 11 (2012) 763–783. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Liao, F. Sueur and P. Zhang, Smooth controllability of the Navier–Stokes equation with Navier conditions: application to Lagrangian controllability. Arch. Ration. Mech. Anal. 243 (2022) 869–941. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Liao, F. Sueur and P. Zhang, Global controllability of the Navier–Stokes equations in the presence of curved boundary with no-slip conditions. J. Math. Fluid Mech. 24 (2022) 32. [CrossRef] [Google Scholar]
  22. F. Marbach, Small time global null controllability for a viscous Burgers equation despite the presence of a boundary layer. J. Math. Pures Appl. 102 (2014) 364–384. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-P. Puel, Controllability of Navier–Stokes equations, in Optimization with PDE constraints. Lect. Notes Comput. Sci. Eng., Vol. 101. Springer, Cham (2014) 379–402. [CrossRef] [Google Scholar]
  24. M. Rissel and Y.-G. Wang, Small-time global approximate controllability for incompressible MHD with coupled Navier slip boundary conditions. arXivpreprintarXiv:2203.10758, 2022. [Google Scholar]
  25. M. Rissel and Y.-G. Wang, Global exact controllability of ideal incompressible magnetohydrodynamic flows through a planar duct. ESAIM Control Optim. Calc. Var. 27 (2021) 24. [Google Scholar]
  26. M. Sammartino and R.E. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192 (1998) 433–461. [CrossRef] [Google Scholar]
  27. M. Sammartino and R.E. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192 (1998) 463–491. [CrossRef] [Google Scholar]
  28. G. Seregin, Lecture Notes on Regularity Theory for the Navier–Stokes Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). [Google Scholar]
  29. M. Sermange and R. Temam, Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36 (1983) 635–664. [CrossRef] [Google Scholar]
  30. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis. Reprint of the 1984 edn., AMS Chelsea Publishing, Providence, RI (2001) xiv+408. [Google Scholar]
  31. P. Zhang and Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal. 270 (2016) 2591–2615. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.