Open Access
Issue
ESAIM: COCV
Volume 30, 2024
Article Number 6
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2024001
Published online 09 February 2024
  1. M. Cirinà, Boundary controllability of nonlinear hyperbolic systems. SIAM J. Control Optim. 7 (1969) 198–212. [CrossRef] [Google Scholar]
  2. T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Series on Applied Mathematics, Vol. 3. American Institute of Mathematical Sciences & Higher Education Press (2010). [Google Scholar]
  3. T. Li and B. Rao, Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748–1755. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Li and B. Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 31 (2010) 723–742. [Google Scholar]
  5. T. Li, B. Rao, and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete Contin. Dyn. Syst. 28 (2010) 243–257. [CrossRef] [MathSciNet] [Google Scholar]
  6. D.L. Russell, Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  7. Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 27 (2006) 643–656. [CrossRef] [Google Scholar]
  8. Q. Zhang, Exact boundary controllability with less controls acting on two ends for quasilinear hyperbolic systems. Appl. Math. J. Chinese Univ. Ser. A 24 (2009) 65–74. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 23 (2002) 209–218. [CrossRef] [Google Scholar]
  10. J. Auriol and F. Di Meglio, Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Automatica J. IFAC 71 (2016) 300–307. [Google Scholar]
  11. G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications, Subseries in Control, Vol. 88. Birkhäuser/Springer, Cham (2016). [CrossRef] [Google Scholar]
  12. J.-M. Coron and H.-M. Nguyen, Optimal time for the controllability of linear hyperbolic systems in one-dimensional space. SIAM J. Control Optim. 57 (2019) 1127–1156. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.-M. Coron and H.-M. Nguyen, Null-controllability of linear hyperbolic systems in one dimensional space. Syst. Control Lett. 148 (2021) 104851. [CrossRef] [Google Scholar]
  14. L. Hu, Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems. SIAM J. Control Optim. 53 (2015) 3383–3410. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Hu, F. Di Meglio, R. Vazquez and M. Krstic, Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control 61 (2016) 3301–3314. [Google Scholar]
  16. X. Lu and T. Li, Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – The constructive method. Chin. Ann. Math. Ser. B 42 (2021) 643–676. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Lu and T. Li, Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – The HUM method. Chin. Ann. Math. Ser. B 43 (2022) 1–16. [Google Scholar]
  18. K. Zhuang, T. Li and B. Rao, Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete Contin. Dyn. Syst. 36 (2016) 1105–1124. [Google Scholar]
  19. F. Alabau-Boussouira, J.-M. Coron and G. Olive, Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls. SIAM J. Control Optim. 55 (2017) 300–323. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42 (2003) 871–906. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Alabau-Boussouira, Observabilité frontière indirecte de systèmes faiblement couplés. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 645–650. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Alabau-Boussouira, Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE’s by a single control. Math. Control Signals Syst. 26 (2014) 1–46. [CrossRef] [Google Scholar]
  23. B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211 (2014) 113–187. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ. 9 (2009) 267–291. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Lissy and E. Zuazua, Internal controllability for parabolic systems involving analytic nonlocal terms. Chin. Ann. Math. Ser. B 39 (2018) 281–296. [CrossRef] [Google Scholar]
  26. L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris 349 (2011) 291–295. [Google Scholar]
  27. T. Li and B. Rao, Boundary Synchronization for Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications. Subseries in Control, Vol. 94. Birkhäuser (2019). [Google Scholar]
  28. A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, U.K., Cambridge (2002). [Google Scholar]
  29. S.H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization. Sci. Am. 269 (1993) 102–109. [CrossRef] [PubMed] [Google Scholar]
  30. F. Varela, J. Lachaux, E. Rodriguez and J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2 (2001) 229–239. [CrossRef] [PubMed] [Google Scholar]
  31. N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 2nd edn. The M.I.T. Press, Cambridge, Mass., John Wiley & Sons, Inc., New York-London (1961). [Google Scholar]
  32. T. Li, X. Lu and B. Rao, Exact boundary synchronization for a coupled system of wave equations with Neumann boundary controls. Chin. Ann. Math. Ser. B 39 (2018) 233–252. [CrossRef] [Google Scholar]
  33. T. Li, X. Lu and B. Rao, Approximate boundary null controllability and approximate boundary synchronization for a coupled system of wave equations with Neumann boundary controls. Contemporary Computational Mathematics – a Celebration of the 80th Birthday of Ian Sloan, edited by J. Dick, F. Y. Kuo, H. Woźniakowski. Springer-Verlag (2018) 837–868. [CrossRef] [Google Scholar]
  34. T. Li, X. Lu and B. Rao, Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls. ESAIM: COCV 27 (2021) S7. [CrossRef] [EDP Sciences] [Google Scholar]
  35. T. Li and B. Rao, Synchronisation exacte d’un système couplé d’équations des ondes par des contrôles frontières de Dirichlet. C. R. Math. Acad. Sci. Paris 350 (2012) 767–772. [CrossRef] [MathSciNet] [Google Scholar]
  36. T. Li and B. Rao, Exact synchronization for a coupled system of wave equation with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160. [CrossRef] [Google Scholar]
  37. T. Li and B. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls. Asymptot. Anal. 86 (2014) 199–226. [MathSciNet] [Google Scholar]
  38. T. Li and B. Rao, Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary control. J. Math. Pures Appl. 105 (2016) 86–101. [CrossRef] [MathSciNet] [Google Scholar]
  39. T. Li and B. Rao, On the approximate boundary synchronization for a coupled system of wave equations: Direct and indirect boundary controls. ESAIM: COCV 24 (2019) 1675–1704. [Google Scholar]
  40. T. Li and B. Rao, Approximate boundary synchronization by groups for a couples system of wave equations with coupled Robin boundary conditions. ESAIM: COCV 27 (2021) 10. [CrossRef] [EDP Sciences] [Google Scholar]
  41. T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. [CrossRef] [EDP Sciences] [Google Scholar]
  42. T. Li, B. Rao and Y. Wei, Generalized exact boundary synchronization for a coupled system of wave equations. Discrete Contin. Dyn. Syst. 34 (2014) 2893–2905. [CrossRef] [MathSciNet] [Google Scholar]
  43. X. Lu, T. Li and B. Rao, Exact boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary controls on a general bounded domain. SIAM J. Control Optim. 59 (2021) 4457–4480. [CrossRef] [MathSciNet] [Google Scholar]
  44. X. Lu, Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 40 (2019) 79–96. [CrossRef] [Google Scholar]
  45. T. Li and X. Lu, Exact boundary synchronization for a kind of first order hyperbolic system. ESAIM: COCV 28 (2022) 34. [CrossRef] [EDP Sciences] [Google Scholar]
  46. L. Wang and Q. Yan, Optimal control problem for exact synchronization of parabolic system. Math. Control Relat. Fields 9 (2019) 411–424. [CrossRef] [MathSciNet] [Google Scholar]
  47. M. Demetriou and F. Fahroo, Optimisation and adaptation of synchronisation controllers for networked second-order infinite-dimensional systems. Int. J. Control 92 (2019) 112–131. [CrossRef] [Google Scholar]
  48. T. Li and Y. Jin, Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B 22 (2001) 325–336. [CrossRef] [Google Scholar]
  49. Z. Lei, T. Li and B. Rao, On the synchronizable system. Chinese Ann. Math. Ser. B 41 (2020) 821–828. [CrossRef] [MathSciNet] [Google Scholar]
  50. F. Guo, Global existence of weakly discontinuous solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Appl. Math.-AJCU 22 (2007) 181–200. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.