Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 41 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/cocv/2025029 | |
Published online | 14 May 2025 |
- J. Wen, X. Li and J. Xiong, Weak closed-loop solvability of stochastic linear quadratic optimal control problems of Markovian regime switching system. Appl. Math. Optim. 84 (2021) 535–565. [CrossRef] [MathSciNet] [Google Scholar]
- G. Yin and Q. Zhang, Continuous-time Markov Chains and Applications: A Singular Perturbation Approach. Springer (2012). [Google Scholar]
- X.Y. Zhou and G. Yin, Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model. SIAM J. Control Optim. 42 (2003) 1466–1482. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Elliott, T.K. Siu and A. Badescu, On pricing and hedging options in regime-switching models with feedback effect. J. Econ. Dyn. Control 35 (2011) 694–713. [CrossRef] [Google Scholar]
- Q. Zhang, Stock trading: An optimal selling rule. SIAM J. Control Optim. 40 (2001) 64–87. [CrossRef] [MathSciNet] [Google Scholar]
- J.M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 (1978) 62–78. [CrossRef] [MathSciNet] [Google Scholar]
- S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [Google Scholar]
- S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994) 1447–1475. [CrossRef] [MathSciNet] [Google Scholar]
- W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system. ANZIAM J. 37 (1995) 172–185. [Google Scholar]
- C. Donnelly, Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math. Optim. 64 (2011) 155–169. [CrossRef] [MathSciNet] [Google Scholar]
- R. Tao and Z. Wu, Maximum principle for optimal control problems of forward–backward regime-switching system and applications. Syst. Control Lett. 61 (2012) 911–917. [CrossRef] [Google Scholar]
- X. Zhang, Z. Sun and J. Xiong, A general stochastic maximum principle for a Markov regime switching jump-diffusion model of mean-field type. SIAM J. Control Optim. 56 (2018) 2563–2592. [Google Scholar]
- S.L. Nguyen, G. Yin and D.T. Nguyen, A general stochastic maximum principle for mean-field controls with regime switching. Appl. Math. Optim. 84 (2021) 3255–3294. [CrossRef] [MathSciNet] [Google Scholar]
- H. Kushner, Optimal stochastic control. IRE Trans. Autom. Control 7 (1962) 120–122. [Google Scholar]
- J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. [CrossRef] [MathSciNet] [Google Scholar]
- S. Chen, X. Li and X.Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685–1702. [CrossRef] [MathSciNet] [Google Scholar]
- X. Zhang, X. Li and J. Xiong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems of Markovian regime switching system. ESAIM Control Optim. Calc. Var. 27 (2021) 1–35. [Google Scholar]
- A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics 9 (1983) 169–222. [CrossRef] [MathSciNet] [Google Scholar]
- U.G. Haussmann, The maximum principle for optimal control of diffusions with partial information. SIAM J. Control Optim. 25 (1987) 341–361. [CrossRef] [MathSciNet] [Google Scholar]
- I. Karatzas and D.L. Ocone, The finite-horizon version for a partially-observed stochastic control problem of Benesš & Rishel. Stoch. Anal. Appl. 11 (1993) 569–605. [CrossRef] [Google Scholar]
- X. Li and S. Tang, General necessary conditions for partially observed optimal stochastic controls. J. Appl. Probab. 32 (1995) 1118–1137. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Hu and B. Øksendal, Partial information linear quadratic control for jump diffusions. SIAM J. Control Optim. 47 (2008) 1744–1761. [CrossRef] [MathSciNet] [Google Scholar]
- P. Lakner, Optimal trading strategy for an investor: the case of partial information. Stoch. Process Appl. 76 (1998) 77–97. [CrossRef] [Google Scholar]
- Q.X. Meng, A maximum principle for optimal control problem of fully coupled forward–backward stochastic systems with partial information. Sci. China-Math. 52 (2009) 1579–1588. [CrossRef] [Google Scholar]
- O.M. Pamen, Maximum principles of Markov regime-switching forward–backward stochastic differential equations with jumps and partial information. J. Optim. Theory Appl. 175 (2017) 373–410. [CrossRef] [MathSciNet] [Google Scholar]
- W.M. Wonham, On the separation theorem of stochastic control. SIAM J. Control Optim. 6 (1968) 312–326. [CrossRef] [Google Scholar]
- G. Wang and Z. Wu, Kalman–Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems. J. Math. Anal. Appl. 342 (2008) 1280–1296. [CrossRef] [MathSciNet] [Google Scholar]
- G. Wang, Z. Wu and J. Xiong, A linear–quadratic optimal control problem of forward–backward stochastic differential equations with partial information. IEEE Trans. Autom. Control 60 (2015) 2904–2916. [CrossRef] [Google Scholar]
- E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. [CrossRef] [Google Scholar]
- D. Duffie and L.G. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [Google Scholar]
- N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Financ. 7 (1997) 1–71. [CrossRef] [Google Scholar]
- C. Le Van and Y. Vailakis, Recursive utility and optimal growth with bounded or unbounded returns. J. Econ. Theory 123 (2005) 187–209. [CrossRef] [Google Scholar]
- C. Skiadas, Robust control and recursive utility. Financ. Stoch. 7 (2003) 475–489. [CrossRef] [Google Scholar]
- H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations. Appl. Math. Optim. 84 (2021) 145–190. [CrossRef] [MathSciNet] [Google Scholar]
- E. Pardoux and S. Tang, Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Field 114 (1999) 123–150. [CrossRef] [Google Scholar]
- S. Peng and Z. Wu, Fully coupled forward–backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825–843. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Yu, Linear–quadratic optimal control and nonzer-sum differential game of forward–backward stochastic system. Asian J. Control 14 (2012) 173–185. [CrossRef] [MathSciNet] [Google Scholar]
- J. Yong, Stochastic optimal control – a concise introduction. Math. Control Relat. Fields 12 (2022) 1039–1136. [CrossRef] [MathSciNet] [Google Scholar]
- X. Li, X.Y. Zhou and A.E.B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 40 (2002) 1540–1555. [CrossRef] [MathSciNet] [Google Scholar]
- G.E. Espinosa and N. Touzi, Optimal investment under relative performance concerns. Math. Financ. 25 (2015) 221–257. [CrossRef] [Google Scholar]
- Y. Hu, J. Huang and X. Li, Linear quadratic mean field game with control input constraint. ESAIM Control Optim. Calc. Var. 24 (2018) 901–919. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Y. Hu, J. Huang and T. Nie, Linear–quadratic–Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 56 (2018) 2835–2877. [CrossRef] [MathSciNet] [Google Scholar]
- X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching. Imperial college press (2006). [CrossRef] [Google Scholar]
- A. Bensoussan and M. Viot, Optimal control of stochastic linear distributed parameter systems. SIAM J. Control Optim. 13 (1975) 904–926. [CrossRef] [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.