Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 28 | |
DOI | https://doi.org/10.1051/cocv/2025005 | |
Published online | 25 April 2025 |
- A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian Viewpoint. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2019). [CrossRef] [Google Scholar]
- R. Montgomery, A tour of sub-Riemannnian geometries, their geodesics and applications. Math. Surv. Monogr. 91 (2002). [Google Scholar]
- M. Grochowski, Geodesics in the sub-Lorentzian geometry. Bull. Polish. Acad. Sci. Math. 50 (2002) 161–178. [MathSciNet] [Google Scholar]
- M. Grochowski, Normal forms of germs of contact sub-Lorentzian structures on R3. Differentiability of the sub- Lorentzian distance. J. Dynam. Control Syst. 9 (2003) 531–547. [CrossRef] [Google Scholar]
- M. Grochowski, On the Heisenberg sub-Lorentzian metric on R3, Geometric Singularity Theory. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences Warszawa 65 (2004) 57–65. [Google Scholar]
- M. Grochowski, Reachable sets for the Heisenberg sub-Lorentzian structure on R3. An estimate for the distance function. J. Dyn. Control Syst. 12 (2006) 145–160. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grochowski, Properties of reachable sets in the sub-Lorentzian geometry. J. Geom. Phys. 59 (2009) 885–900. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grochowski, Reachable sets for contact sub-Lorentzian metrics on R3. Application to control affine systems with the scalar input. J. Math. Sci. (N.Y.) 177 (2011) 383–394. [CrossRef] [MathSciNet] [Google Scholar]
- D.-C. Chang, I. Markina and A. Vasil’ev, Sub-Lorentzian geometry on anti-de Sitter space, J. Math. Pures Appl. 90 (2008) 82–110. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grochowski, A. Medvedev and B. Warhurst, 3-Dimensional left-invariant sub-Lorentzian contact structures. Differ. Geom. Appl. 49 (2016) 142–166. [CrossRef] [Google Scholar]
- E. Grong and A. Vasil’ev, Sub-Riemannian and sub-Lorentzian geometry on SU(1, 1) and on its universal cover. J. Geom. Mech. 3 (2011) 225–260. [CrossRef] [MathSciNet] [Google Scholar]
- A. Korolko and I. Markina, Nonholonomic Lorentzian geometry on some H-type groups. J. Geom. Anal. 19 (2009) 864–889. [CrossRef] [MathSciNet] [Google Scholar]
- Yu. L. Sachkov and E.F. Sachkova, Sub-Lorentzian distance and spheres on the Heisenberg group. J. Dyn. Control Syst. 29 (2023) 1129–1159. [CrossRef] [MathSciNet] [Google Scholar]
- A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, Sub-Riemannian sphere in Martinet flat case. J. ESAIM Control Optim. Calc. Var. 2 (1997) 377–448. [CrossRef] [EDP Sciences] [Google Scholar]
- Yu.L. Sachkov, Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions. Russian Math. Surveys 78 (2023) 65–163. [CrossRef] [MathSciNet] [Google Scholar]
- A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (2004). [Google Scholar]
- Yu. Sachkov, Introduction to Geometric Control. Springer (2022). [CrossRef] [Google Scholar]
- L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes. John Wiley & Sons, New York/London (1962). [Google Scholar]
- A. Ardentov, Yu. L. Sachkov, T. Huang and X. Yang, Extremals in the Engel group with a sub-Lorentzian metric. Sbornik: Mathematics 209 (2018) 3–31. [CrossRef] [MathSciNet] [Google Scholar]
- D.F. Lawden, Elliptic Functions and Applications. Springer (1989). [Google Scholar]
- E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of Principal Transcendental Functions. Cambridge University Press, Cambridge (1996). [Google Scholar]
- S.G. Krantz and H.R. Parks, The Implicit Function Theorem: History, Theory, and Applications. Birkauser (2001). [Google Scholar]
- A.A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, in Nonlinear and Optimal Control Theory, Lecture Notes in Mathematics. CIME, 1932. Springer Verlag (2008) 1–59. [Google Scholar]
- Yu. L. Sachkov, Existence of sub-Lorentzian Length maximizers. Differ. Equ. 59 (2023) 1702–1709. [Google Scholar]
- Yu. L. Sachkov, The Maxwell set in the generalized Dido problem. Sbornik: Mathematics 197 (2006) 595–621. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.