Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 7
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2024079
Published online 24 January 2025
  1. B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODE’s. J. Geom. Mech. 5 (2013) 85–129. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems. Proc. Steklov Math. Inst. 256 (2007) 26–46. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Agrachev and I. Beschastny, Jacobi fields in optimal control: morse and Maslov indices. Nonlinear Anal. 214 (2022) 112608. [CrossRef] [Google Scholar]
  4. A. Agrachev and R. Gamkrelidze, Feedback–invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Syst. 3 (1997) 343–389. [CrossRef] [Google Scholar]
  5. A. Agrachev and R. Gamkrelidze, Feedback–invariant optimal control theory and differential geometry. II. Jacobi curves for singular extremals. J. Dyn. Control Syst. 4 (1998) 583–604. [CrossRef] [Google Scholar]
  6. A. Agrachev and I. Zelenko, Geometry of Jacobi curves II. J. Dyn. Control Syst. 8 (2002) 167–215. [CrossRef] [Google Scholar]
  7. D. Barilari and L. Rizzi, Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: COCV 22 (2016) 439–472. [CrossRef] [EDP Sciences] [Google Scholar]
  8. N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control. Trans. Am. Math. Soc. 348 (1996) 3133–3153. [CrossRef] [Google Scholar]
  9. J.F. Carinena, I. Gheorghiu and E. Martínez, Jacobi fields for second-order differential equations on Lie algebroids, in Dynamical Systems and Differential Equations, Proceedings of the 10th AIMS International Conference, edited by M. de León, et al. Madrid, Spain (2015) 213–222. [Google Scholar]
  10. J.F. Carinena and E. Martinez, Generalized Jacobi equation and inverse problem in classical mechanics, in Integral Systems, Solid State Physics and Theory of Phase Transitions, edited by V.V. Dondonov and V. Manko. Nova Science (1992). [Google Scholar]
  11. M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations. Ann. Inst. Henri Poincare 65 (1996) 223–249. [Google Scholar]
  12. S. Hajdú and T. Mestdag, Conjugate points for systems of second-order ordinary differential equations. Int. J. Geom. Methods Mod. Phys. 17 (2020). [Google Scholar]
  13. M. Jerie and G.E. Prince, Jacobi fields and linear connections for arbitrary second-order ODEs. J. Geom. Phys. 43 (2002) 351–370. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.V. Sabau, Some remarks on Jacobi stability. Nonlinear Anal. 63 (2005) e143–e153. [CrossRef] [Google Scholar]
  15. A. Agrachev, D. Barilari and L. Rizzi, Curvature: a variational approach. Mem. AMS 256 (2007). [Google Scholar]
  16. F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Texts in Applied Mathematics (TAM), Vol. 49. Springer (2005). [CrossRef] [Google Scholar]
  17. S. Ricardo and W. Respondek, When is a control system mechanical? J. Geom. Mech. 2 (2010) 265–302. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Cartan, Observations sur le mémoir précédent. Math. Zeitschrift 37 (1933) 619–622. [CrossRef] [MathSciNet] [Google Scholar]
  19. S.-S. Chern, Sur la géométrie d’un systéme d’équations différentialles du second ordre. Bull. Sci. Math. 63 (1939) 206–212. [MathSciNet] [Google Scholar]
  20. D.D. Kosambi, Parallelism and path-space. Math. Zeitsch. 37 (1933) 608–618. [CrossRef] [Google Scholar]
  21. D.A. Grossman, Torsion-free path geometries and integrable second order ODE systems. Selecta Math. (N.S.) 6 (2000) 399–442. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Diaz, J.B. McLaughlin and R. Joyce, Sturm comparison theorems for ordinary and partial differential equations. Bull. Am. Math. Soc. 75 (1969) 335–339. [CrossRef] [Google Scholar]
  23. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Birkhauser Basel (2003). [CrossRef] [Google Scholar]
  24. P. Hartman, Ordinary Differential Equations. John Wiley and Sons, New York (1964). [Google Scholar]
  25. F.C. Chittaro, An estimate for the entropy of Hamiltonian flows. J. Dyn. Control Syst. 13 (2007) 55–67. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321–356. [CrossRef] [Google Scholar]
  27. E. Falbel and C. Gorodski, Sub-Riemannian homogeneous spaces in dimensions 3 and 4. Geom. Dedicata 62 (1996) 227–252. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Grochowski and W. Kryński, Invariants of sub-pseudo-Riemannian structures and Einstein-Weyl geometry. Radon Ser. Computat. Appl. Math. 18 (2016) 434–453. [Google Scholar]
  29. M. Grochowski and W. Kryński, On contact sub-pseudo-Riemannian isometries. ESAIM: COCV 23 (2017) 1751–1765. [CrossRef] [EDP Sciences] [Google Scholar]
  30. M. Nowicki and W. Respondek, A mechanical feedback classification of linear mechanical control systems, Special issue “Advances in robot motion and control”. Appl. Sci. 11 (2021) 10669. [CrossRef] [Google Scholar]
  31. W. Kryński and O. Makhmali, Lewy curves in para-CR geometry. arXiv:2406.04798 (2024). [Google Scholar]
  32. G. Bor, L. Lamoneda and P. Nurowski, The dancing metric, G2-symmetry and projective rolling. Trans. Am. Math. Soc. 370 (2018) 4433–4481. [CrossRef] [Google Scholar]
  33. M. Dunajski, Twistor theory of dancing paths. SIGMA 18 (2022) 027. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.