Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 8
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2024087
Published online 31 January 2025
  1. G.M. Erickson, Differential game methods of advertising competition. Eur. J. Oper. Res. 83 (1995) 431–438. [CrossRef] [Google Scholar]
  2. V.E. Lambson, Self-enforcing collusion in large dynamic markets. J. Econ. Theory 34 (1984) 282–291. [CrossRef] [Google Scholar]
  3. Y. Weintraub, L. Benkard and B. Van Roy, Markov perfect industry dynamics with many firms. Econometrica 76 (2008) 1375–1411. [CrossRef] [Google Scholar]
  4. J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK (1998). [CrossRef] [Google Scholar]
  5. T. Basar and G.J. Olsder, Dynamic Non-Cooperative Game Theory. SIAM, Philadelphia (1999). [Google Scholar]
  6. M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.M. Lasry and P.L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [Google Scholar]
  8. M. Huang, Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 48 (2010) 3318–3353. [CrossRef] [Google Scholar]
  9. M. Huang, P.E. Caines and R.P. Malhamé, Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Automat. Control 57 (2012) 1736–1751. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Nourian, P.E. Caines, R.P. Malhame and M. Huang, Nash, social and centralized solutions to consensus problems via mean field control theory. IEEE Trans. Automat. Control 58 (2013) 639–653. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Bensoussan, K.C.J. Sung, S.C.P. Yam and S.P. Yung, Linear-quadratic mean field games. J. Optim. Theory Appl. 169 (2016) 496–529. [Google Scholar]
  12. J. Huang, S. Wang and Z. Wu, Backward mean-field linear-quadratic-gaussian (LQG) games: full and partial information. IEEE Trans. Automat. Control 61 (2016) 3784–3796. [CrossRef] [MathSciNet] [Google Scholar]
  13. N. Şen and P.E. Caines, Nonlinear filtering theory for McKean-Vlasov type stochastic differential equations. SIAM J. Control Optim. 54 (2016) 153–174. [Google Scholar]
  14. K.K. Aase, T. Bjuland and B. Øksendal, Partially informed noise trader. Math. Finan. Econ. 6 (2012) 93–104. [CrossRef] [Google Scholar]
  15. K. Back, Insider trading in continuous time. Rev. Financ. Stud. 5 (1992) 387–409. [CrossRef] [Google Scholar]
  16. A.S. Kyle, Continuous auctions and insider trading. Econometrica 53 (1985) 1315–1366. [CrossRef] [Google Scholar]
  17. M. Grewal and A. Andrews, Kalman Filtering, Theory and Practice Using MATLAB. 4th edn. Wiley, Hoboken (2015). [Google Scholar]
  18. G. Kallianpur, Stochastic Filtering Theory. Springer-Verlag, New York Inc. (1980). [CrossRef] [Google Scholar]
  19. R.S. Liptser and A.N. Shiryaev, Statistic of Random Process. I. General Theory. Springer-Verlag, Berlin Heidelberg, New York (2001). [Google Scholar]
  20. R.S. Liptser and A.N. Shiryaev, Statistic of Random Process: II Applications. Springer-Verlag, Berlin Heidelberg, New York (2001). [Google Scholar]
  21. K.K. Aase, T. Bjuland and B. ØKsendal, An anticipative linear filtering equation. Syst. Control Lett. 60 (2011) 486–471. [CrossRef] [Google Scholar]
  22. M. Chaleyat-Maurel and T. Jeulin, Grossissement Gaussien de la filtration Brownienne, in LNM, vol. 1118. Springer (1985). [Google Scholar]
  23. Y. Hu, An enlargement of filtration for Brownian motion. Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011) 1671–1678. [MathSciNet] [Google Scholar]
  24. R. Mausuy and M. Yor, Random Times and Enlargements of Filtrations in a Brownian Motion Setting, in Springer Lecture Notes in Mathematics (2006). [Google Scholar]
  25. M. Yor, Grossissement de filtrations et absolue continuit de noyaux, in LNM, vol. 1118. Springer (1985). [Google Scholar]
  26. S. Tindel, Y. Liu and G. Lin, On the anticipative nonlinear filtering problem and its stability. Appl. Math. Optim. 84 (2021) 399–423. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Bensoussan, X. Feng and J. Huang, Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Math. Control Relat. Fields 11 (2021) 23–46. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Carmona, F. Delarue and D. Lacker, Mean field games with common noise. Ann. Probab. 44 (2016) 3740–3803. [MathSciNet] [Google Scholar]
  29. N. Şen and P.E. Caines, Mean field games with partial observation. SIAM J. Control Optim. 57 (2019) 2064–2091. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Bensoussan, Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge, UK (1992). [CrossRef] [Google Scholar]
  31. W. Wonham, On the separation theorem of stochastic control. SIAM J. Control 6 (1968) 312–326. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
  33. J. Sun and J. Xiong, Stochastic linear-quadratic optimal control with partial observation. SIAM J. Control Optim. 61 (2023) 1231–1247. [CrossRef] [MathSciNet] [Google Scholar]
  34. E. Pardoux and S. Peng, Adapted solution of backward stochastic equation. Syst. Control Lett. 14 (1990) 55–61. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.