Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 49 | |
DOI | https://doi.org/10.1051/cocv/2025004 | |
Published online | 14 February 2025 |
- J.-J. Marigo and K. Kazymyrenko, A micromechanical inspired model for the coupled to damage elasto-plastic behavior of geomaterials under compression. Mech. Ind. 20 (2019) 105. [CrossRef] [EDP Sciences] [Google Scholar]
- K. Pham and J.-J. Marigo, Approche variationnelle de l’endommagement: II. Les modèles à gradient. Comptes Rendus Mécanique 338 (2010) 199–206. [CrossRef] [Google Scholar]
- R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch. Ration. Mech. Anal. 214 (2014) 575–615. [CrossRef] [MathSciNet] [Google Scholar]
- V. Crismale, Energetic solutions for the coupling of associative plasticity with damage in geomaterials. Nonlinear Anal. 222 (2022) 112957. [Google Scholar]
- A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Proceedings of the Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, edited by H.D. Alber, R. Balean, and R. Farwig, Aachen. Shaker-Verlag (1999) 117–129. [Google Scholar]
- J. Ulloa, J. Wambacq, R. Alessi, E. Samaniego, G. Degrande and S. François, A micromechanics-based variational phase-field model for fracture in geomaterials with brittle-tensile and compressive-ductile behavior. J. Mech. Phys. Solids 159 (2021) 104684. [Google Scholar]
- E.C. Aifantis, On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106 (1984) 326–330. [CrossRef] [Google Scholar]
- N.A. Fleck and J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49 (2001) 2245–2271. [CrossRef] [Google Scholar]
- R.A.B. Engelen, M.G.D. Geers and F.P.T. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19 (2003) 403–433. [CrossRef] [Google Scholar]
- R.H.J. Peerlings, On the role of moving elastic–plastic boundaries in strain gradient plasticity. Model. Simulat. Mater. Sci. Eng. 15 (2007) 109–120. [Google Scholar]
- S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135 (2009) 117–131. [CrossRef] [Google Scholar]
- L.H. Poh, R.H.J. Peerlings, M.G.D. Geers and S. Swaddiwudhipong, An implicit tensorial gradient plasticity model–formulation and comparison with a scalar gradient model. Int. J. Solids Struct. 48 (2011) 2595–2604. [CrossRef] [Google Scholar]
- L. Anand, O. Aslan and S.A. Chester, A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands. Int. J. Plast. 30–31 (2012) 116–143. [CrossRef] [Google Scholar]
- C. Miehe, F. Aldakheel and S. Mauthe, Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. Int. J. Numer. Methods Eng. 94 (2013) 1037–1074. [CrossRef] [Google Scholar]
- I. Zreid and M. Kaliske, An implicit gradient formulation for microplane Drucker–Prager plasticity. Int. J. Plast. 83 (2016) 252–272. [CrossRef] [Google Scholar]
- G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
- A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18 (2012) 36–80. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18 (2016) 2107–2165. [CrossRef] [MathSciNet] [Google Scholar]
- R. Rossi and G. Savaré, A characterization of energetic and BV solutions to one-dimensional rate-independent systems. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 167–191. [MathSciNet] [Google Scholar]
- G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Rational Mech. Anal. 189 (2008) 469–544. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Networks Heterog. Media 5 (2010) 97–132. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Part. Differ. Equ. 40 (2011) 125–181. [CrossRef] [Google Scholar]
- J.-F. Babadjian, G.A. Francfort and M.G. Mora, Quasi-static evolution in nonassociative plasticity: the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. [CrossRef] [MathSciNet] [Google Scholar]
- G.A. Francfort and U. Stefanelli, Quasi-static evolution for the Armstrong–Frederick hardening-plasticity model. Appl. Math. Res. Express. 2 (2013) 297–344. [Google Scholar]
- F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials. Arch. Ration. Mech. Anal. 212 (2014) 283–330. [Google Scholar]
- D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18 (2008) 1529–1569. [CrossRef] [MathSciNet] [Google Scholar]
- G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation. Math. Models Methods Appl. Sci. 21 (2011) 2019–2047. [CrossRef] [MathSciNet] [Google Scholar]
- D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. [Google Scholar]
- V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc. Var. Part. Differ. Equ. 55 (2016) 1–54. [CrossRef] [Google Scholar]
- S. Almi, G. Lazzaroni and I. Lucardesi, Crack growth by vanishing viscosity in planar elasticity. Math. Eng. 2 (2020) 141–173. [CrossRef] [MathSciNet] [Google Scholar]
- R. Alessi, V. Crismale and G. Orlando, Fatigue effects in elastic materials with variational damage models: a vanishing viscosity approach. J. Nonlinear Sci. 29 (2019) 1041–1094. [CrossRef] [MathSciNet] [Google Scholar]
- V. Crismale and R. Rossi, Balanced viscosity solutions to a rate-independent coupled elasto-plastic damage system. SIAM J. Math. Anal. 53 (2021) 3420–3492. [CrossRef] [MathSciNet] [Google Scholar]
- V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Control Optim. Calc. Var. 22 (2016) 883–912. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- F. Solombrino, A-priori time regularity estimates and a simplified proof of existence in perfect plasticity. Math. Nachr. 288 (2015) 1786–1800. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Verlag, Basel (2005) viii+333. [Google Scholar]
- G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics Series, Vol. 207. Longman, Harlow, New York (1989) iv+222. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.