Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/cocv/2024094 | |
Published online | 12 February 2025 |
- F. Boarotto and A. Lerario, Homotopy properties of horizontal path spaces and a theorem of Serre in Subriemannian geometry. Commun. Anal. Geom. 25 (2017) 269–301. [CrossRef] [Google Scholar]
- A. Lerario and A. Mondino, Homotopy properties of horizontal loop spaces and applications to closed sub- Riemannian geodesics. Trans. Amer. Math. Soc. Ser. B 6 (2019) 187–214. [CrossRef] [MathSciNet] [Google Scholar]
- E. Caponio, M.A. Javaloyes and A. Masiello, Multiple connecting geodesics of a Randers–Kropina metric via homotopy theory for solutions of an affine control system. Topol. Methods Nonlinear Anal. 61 (2023) 527–547. [MathSciNet] [Google Scholar]
- E. Caponio, F. Giannoni, A. Masiello and S. Suhr, Connecting and closed geodesics of a Kropina metric. Adv. Nonlinear Stud. 21 (2021) 683–695. [CrossRef] [MathSciNet] [Google Scholar]
- A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020. [Google Scholar]
- O. Müller, A note on closed isometric embeddings. J. Math. Anal. Appl. 349 (2009) 297–298. [CrossRef] [MathSciNet] [Google Scholar]
- J. Dominy and H. Rabitz, Dynamic homotopy and landscape dynamical set topology in quantum control. J. Math. Phys. 53 (2012) 082201. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Sarichev, On homotopy properties of the space of tra jectories of a completely nonholonomic differential system. Sov. Math. Dokl. 42 (1991) 674–678. [Google Scholar]
- S. Smale, Regular curves on Riemannian manifolds. Trans. Amer. Math. Soc. 87 (1958) 492–512. [CrossRef] [MathSciNet] [Google Scholar]
- F.H. Clarke, Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990). [CrossRef] [Google Scholar]
- J.-P. Serre, Lie Algebras and Lie Groups. Springer-Verlag, Berlin, Heidelberg, New York (2006). [Google Scholar]
- P. Hartman, Ordinary Differential Equations. John Wiley & Sons Inc., New York (1964). [Google Scholar]
- W. Hurewicz, On the concept of fiber space. Proc. Nat. Acad. Sci. U.S.A. 41 (1955) 956–961. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- W. Rudin, Real and Complex Analysis. McGraw-Hill, Singapore (1987). [Google Scholar]
- A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge (2001). [Google Scholar]
- S.A. Mitchell, Notes on Serre Fibrations. Available at https://sites.math.washington.edu/mitchell/Atopc/serre.pdf (2001). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.